Featured Creature: Prickly Pear Cactus

What plant thrives in the harshest landscapes, conserving water like a desert camel, and produces a sweet yet spiky fruit enjoyed for centuries? The Prickly Pear Cactus!

Credit: Hub JACQ via Pexels

When I’m in the south of France, nothing makes me happier than spending the day by the ocean, taking in the salty breeze and strolling along the littoral. After a long afternoon on the beach, as I make my way home, I always notice prickly pear cacti scattered throughout the local fauna. 

Prickly pear cacti are everywhere in the south of France, where I’m from. My mom, who grew up in Corsica, used to tell me stories about how she’d collect and eat the fruit as a kid. So, naturally, last summer, when I spotted some growing along the path home from the beach, I figured—why not try one myself? 

Big mistake. 

Without gloves (rookie move), I grabbed one with my bare hands. The next 20 minutes were spent with my friends painstakingly plucking hundreds of tiny, nearly invisible needles out of my fingertips. The pain wasn’t unbearable, but watching my hands transform into a pincushion was… unsettling. And to top it all off? The fruit wasn’t even ripe.

For the longest time, I just assumed prickly pears were native to the Mediterranean. They grow everywhere, you can buy them at local markets, and my mom spoke about them like they were an age-old Corsican tradition. But a few weeks ago, while researching cochineal bugs (parasitic insects that live on prickly pear cacti), I discovered something surprising—prickly pears aren’t native to the south of France at all. They actually originate from Central and South America, and were introduced to the Mediterranean from the Americas centuries ago. They’ve since become naturalized.

Curious to learn more, I dove into the biology of prickly pears—and it turns out, these cacti are far more than just a tasty (and slightly dangerous) snack. Their survival strategies, adaptations, and ecological impact make them one of the most fascinating plants out there.

Prickly Pear Cactus Fruit
Credit: Maciej Cisowski via Pexels

Prickly pear cacti belong to the Cactaceae family, and they’re absolute survivors. In spring and summer, they produce vibrant flowers that bloom directly on their paddles, eventually transforming into edible berries covered in sneaky little thorns (trust me, I learned that the hard way). 

These cacti thrive in drylands but adapt surprisingly well to different climates. They prefer warm summers, cool dry winters, and temperatures above -5°C (23°F).Their ability to store water efficiently and withstand long dry periods has earned them the nickname ‘the camel of the plant world.’ They can lose up to 80-90% of their total water content and still bounce back, an adaptation that allows them to endure long periods of drought.

They are designed to make the most of their access to water whenever they get the chance. The cactus can develop different types of roots depending on what they need to survive, making them masters of adaptation. One of their coolest tricks? “Rain roots.” These special roots pop up within hours of light rainfall to soak up water—then vanish once the soil dries out. 

And then there are their infamous spines. Prickly pears have two kinds: large protective spines and tiny, hair-like glochids. The glochids are the real troublemakers—easily dislodged, nearly invisible, and an absolute nightmare to remove if they get stuck in your skin. (Again, learned this the hard way.)

Credit: Andy M (CC-BY-NC)

Nopal (Cactus Pads) – A Nutrient Powerhouse 

The term “nopal” refers to both the prickly pear cactus and its pads. It originates from the Nahuatl word nohpalli, which specifically describes the plant’s flat, fleshy segments. 

These pads are highly nutritious and well-suited for human consumption, packed with essential vitamins and minerals. They are especially rich in calcium, making them an excellent dietary alternative for populations with high rates of lactose intolerance, such as in India. 

Beyond calcium, nopales also provide amino acids and protein, offering a valuable plant-based protein source. They are rich in fiber, vitamins, and minerals, making their nutritional profile comparable to fruits like apples and oranges, explaining their long-standing role in traditional cuisine. From soups and stews to salads and marmalades, they are a versatile ingredient enjoyed in a variety of dishes 

Ever wondered how to clean and grill a prickly pear pad at home?

The Fruit – Sweet & Versatile 

Prickly pears produce colorful, juicy fruits called tunas, which range in color from white and yellow to deep red and orange as they ripen. Their flavor is often described as a mix between watermelon and berries, while others compare it to pomegranate. Either way, they make for a delicious and refreshing snack. 

But before you take a bite, be sure to peel them carefully. If you don’t remove the outer layer properly, you might end up with tiny spines lodged in your lips, tongue, and throat (which is about as fun as it sounds). Once cleaned, the fruit is used in jams, juices, and is even pickled!

Credit: Emilio Sánchez Hernández via Pexels

Prickly pear cacti produce stunning flowers that attract a variety of pollinators, particularly bees. Some specialist pollinators have evolved to depend exclusively on prickly pear flowers as their sole pollen source, highlighting an amazing co-evolutionary relationship. One fascinating example is a variety that has evolved to be pollinated exclusively by hummingbirds, demonstrating the plant’s remarkable ecological flexibility. 

If you’d like to see this incredible interaction for yourself, check out the following footage of a hummingbird feeding on a prickly pear flower. Though the video quality is low, the enthusiasm of the couple filming it makes up for it! 🙂

Another fascinating feature of prickly pear flowers are their thermotactic anthers. Okay so yeah, that’s a bit of a mouthful. Basically, the part of the flower responsible for producing pollen, the anthers, have a unique ability to respond to temperature changes—releasing pollen only when conditions are just right for pollination. Prickly pear flowers achieve this through movement; the anthers physically curl over to deposit pollen directly onto visiting pollinators. 

You can even see this in action yourself! Try gently tapping an open flower, and watch as it instinctively delivers its pollen like a built-in pollen delivery system. 

Once pollinated, the flowers transform into fruit, which then serve as an essential food source for birds and small mammals. These animals help disperse the seeds, allowing new cacti to grow in different areas. But prickly pears don’t just rely on seeds for reproduction, they also have an incredible ability to clone themselves. If a pad breaks off and lands in the right conditions, it can root itself and grow into an entirely new cactus. Talk about resilience! 

Like most cacti, prickly pears are tough survivors, thriving even in degraded landscapes. But they go a step further, not just enduring harsh conditions, but actively helping to restore them. The plant’s roots act as natural barriers, preventing erosion, locking in moisture, and enriching the soil with organic matter. Studies show that areas dense with prickly pears experience significantly less soil degradation, proving their role in restoring fragile land. 

They also improve soil structure, making it lighter and more fertile, which boosts microbial activity and essential nutrients. They act as natural detoxifiers, absorbing pollutants like heavy metals and petroleum-based toxins and offering an eco-friendly way to restore contaminated soils. 

Roots of the prickly pear cactus.
Credit: Homrani Bakali, Abdelmonaim, et. al, 2016

A Tale of Two Ecosystems

Prickly pear plantations are powerful carbon sinks, pulling CO₂ from the air and storing it in the soil. In fact, research shows that prickly pear cultivations in Mexico sequester carbon at rates comparable to forests. A major factor? The cactus stimulates microbial activity in the soil, a key driver of carbon storage. 

When farmed sustainably, the CO₂ prickly pears absorb offset the greenhouse gases emitted during cultivation.

Prickly pear cacti have immense capability for land restoration and carbon sequestration, but this potential varies dramatically depending on how they are introduced and managed, and where. In some regions, like Ethiopia, they serve as a lifeline for communities facing desertification. In others, like South Africa, they’ve become invasive, disrupting native ecosystems. 

By exploring these two contrasting case studies, we can see how the same plant can either heal or harm the land—and why responsible management is key. 

Tigray, Ethiopia: A Natural Fit for Harsh Climates 

In Ethiopia, where over half the land experiences water shortages, the prickly pear cactus has become indispensable since its introduction in the 19th century. Arid lands are notorious for unpredictable rainfall, prolonged droughts, and poor soils. But the prickly pear cactus defies these challenges. Requiring minimal water, it provides a reliable food source for both humans and animals, making it an essential crop for small-scale farmers in dry regions. 

Prickly pear pads are a crucial livestock feed during droughts, providing moisture and nutrients when other forage is scarce. While it cannot be used as the sole source of nutrition for most ruminants, it’s definitely a necessary supplement in times of drought. 

Additionally, the plant’s dense growth creates natural barriers, curbing overgrazing and helping native vegetation recover. 

As a food source, prickly pear can be used to supplement human diet. The cactus is an alternative to water-intensive cereals like wheat and barley. With higher biomass yields and significantly lower water requirements, it offers a sustainable solution to food security in drought-prone areas. 

Unfortunately, prickly pear cultivation in Ethiopia is under threat from invasive cochineal infestations. These cochineal insects, originally used for dye production, were later introduced outside their native range, where they’ve become agricultural pests, devastating cactus populations.

South Africa: When Prickly Pear Becomes a Problem 

While the cactus is a valuable resource in some regions, in others, it becomes an invasive species, altering ecosystems and threatening native plants. 

In South Africa, prickly pears were introduced by European settlers, but without natural predators to control them, they spread aggressively. Today, they dominate large areas, outcompeting native vegetation and consuming scarce resources like water and soil nutrients. Their dense growth also creates impenetrable thickets that hinder livestock grazing and disrupt local ecosystems. 

To control its spread, South Africa turned to biological solutions, ironically using the same cochineal insect that threatens Ethiopia’s prickly pear. In South Africa, cochineal insects have been highly effective at curbing cactus overgrowth, selectively feeding on the invasive species and allowing native plants to recover. 

This dual role of the prickly pear cactus—as both a valuable resource and a potential ecological threat—highlights the importance of responsible management. Striking a balance between conservation and cultivation is key to harnessing the plant’s benefits while preventing unintended environmental consequences. 

Innovative Uses: From Energy to Eco-Friendly Materials

The prickly pear’s resilience extends beyond its survival in harsh environments—it’s also fueling innovation in sustainability. Scientists and entrepreneurs are finding new ways to harness this plant’s potential, from renewable energy to eco-friendly materials. 

In the search for cleaner energy sources, prickly pear biomass is being used to produce biogas and bioethanol, offering a renewable alternative to fossil fuels. Unlike resource-intensive crops, the cactus thrives with minimal water, making it a low-impact solution for sustainable energy. Meanwhile, its juice is being explored as a base for biodegradable plastics. Unlike corn-based bioplastics, which require significant land and water resources, cactus-based plastics are more sustainable and continue growing after harvesting, reducing environmental strain. 

Cactus leather, developed by companies like Desserto, provides a sustainable alternative to synthetic and animal-based materials. Unlike traditional vegan leather, which often contains petroleum-based plastics, cactus leather is biodegradable, water-efficient, and durable. As more industries embrace the potential of this remarkable plant, the prickly pear is proving that sustainability and innovation can go hand in hand.

From nourishing communities to restoring degraded land, and generating clean energy, the prickly pear is far more than just a desert plant—it’s a symbol of resilience, innovation, and sustainability. However, its impact depends on careful management. Whether cultivated as a food source or controlled as an invasive species, striking the right balance is key to unlocking its full potential. 

And if this article has inspired you to try a prickly pear fruit for yourself, please stick to the store-bought varieties. Unlike wild varieties, cultivated prickly pears are often spineless, making them easier (and safer) to eat. Plus, it would give me, the author, peace of mind knowing that no one has to suffer the same fate I did when I ended up with a hand full of spines after an ill-fated foraging attempt.


Lakhena Park holds degrees in Public Policy and Human Rights Law but has recently shifted her focus toward sustainability, ecosystem restoration, and regenerative agriculture. Passionate about reshaping food systems, she explores how agroecology and land management practices can restore biodiversity, improve soil health, and build resilient communities. She is currently preparing to pursue a Permaculture Design Certificate (PDC) to deepen her understanding of regenerative practices. Fun fact: Pigs are her favorite farm animal—smart, playful, and excellent at turning soil, they embody everything she loves about regenerative farming.


Sources and Further Reading


Featured Creature: Yucca

What plant can also be used as a soap,
but without a certain insect, simply could not cope? 

Yucca!

Soapweed yucca (Wikimedia Commons by James St. John) 

On a dreary, gray day at school, as I hurried from one academic building to another, I spotted a patch of spiky green shrubs, sticking out like a sore thumb. These plants gave me pause because though they were a familiar sight, I had last seen them in the high desert of Mancos, Colorado, a very different setting than my New England college campus, some 3,000 miles away. How did they get here? I wondered, and how are they thriving in an environment so different from the one I had last seen them in? 

There are about 30 species of yucca, most of which are native to North and Central America. The yucca that I recognized on my campus walk was soapweed yucca, also known as great plains yucca. Soapweed yucca is a shrub with narrow leaves, almost knife-like in their sharpness, which can grow up to 3 feet tall. Soapweed yucca grows in the dry, rocky soils of short grass prairies and desert grasslands and thrives in more arid biomes. Still, it can be found across the United States; the yucca’s thick, rhizomatous roots (horizontal underground stems that send out both shoots and roots) allow the plant to thrive in many environments with different soils, including sand. It is a hardy plant, and can tolerate cold and moderate wetness, hence its ability to survive on my college campus in the Northeastern United States.

Soapweed yucca (Pixabay)

The shrub received its name, soapweed, due to the saponin contained in its roots. Saponin is a naturally occurring substance in plants that foams upon contact with water, creating a natural soap, which is something that I wish I had known as I camped feet away from the yucca in Colorado. In addition to its cleansing properties, the saponin has a strong bitter taste, and is used by plants, such as the yucca, as a deterrent against hungry insects and animals alike. For humans however, these characteristics make it an attractive partner. These saponin can be turned into sudsy cleansing soap. This process has been used by indigenous peoples for hundreds of years, and is modeled in the video below.

The flower and root of the yucca plant have been used as a nutritional, and tasty snack for centuries. As we learned earlier, the roots and flowers of yucca contain saponin, which, while offering medicinal and hygiene benefits, can be toxic or harmful if not properly prepared for consumption. When consumed, the saponin has a bitter taste, and can cause a burning sensation in the throat. However, if properly prepared, the yucca flower and root can be used in a variety of different recipes. The following video shows the proper way to prepare, and eat, yucca flowers. 

In addition to eating the flowers of the yucca plant, the root holds incredible nutritional and medicinal benefit. Roots were used in a salve for sores and rubbed on the body to treat skin diseases. The sword shaped leaves of the yucca plant could also be split into long strips to be weaved into useful cords. Due to the strong fibers contained in the leaves, yucca could be stripped into thread to fashion baskets, fishing nets, and clothing. 

The Yucca Moth 

During the spring months, from the center of mature soapweed yucca blooms a beautiful stalk of cream colored flowers. At the same time as the yucca flower blooms, an insect called the yucca moth emerges from its cocoon. The yucca moth is small, and white in color, closely resembling a petal of the yucca flower, which allows the insect to blend in with the blossoms. There is a powerful symbiotic relationship between the yucca plant, and the yucca moth, meaning that two organisms have a long term, mutually beneficial biological relationship. 

Yucca moths in flowers
(WikiCommons by Judy Gallager)

After breaking out of their cocoons, the male and female yucca moths find their way to the blossoms of the yucca flower, where they mate. The female yucca moth then gathers pollen from the yucca, flying to different plants which ensures the cross pollination of the plant.  She shapes the pollen into a large lump, which she holds underneath her chin as she travels, searching for the proper flower to lay her eggs. This ball of pollen can reach up to three times the size of her head! Once located, she lays her eggs in the ovary of the yucca’s flower. She then deposits her collection of pollen onto the stigma of the flower, pollinating the yucca, which will now produce fruit and seeds for her larvae to feed off of. The larvae mature before they can
consume all of the yucca’s viable seeds, allowing
the yucca to continue to reproduce. 

Flowering yucca
(pixabay by Thanasis Papazacharias) 

Leaving her larvae, the eggs grow for a few weeks on their own. Once they reach the right size, the larvae drops from the yucca flowers to the ground, where it burrows underground and forms its cocoon. The lifespan of a yucca moth is only about a year, and the majority of that time is spent in the pupal, or cocoon stage, under the earth. Once an adult moth has mated, it marks the end of their brief life as adult moths. Once underground, the insect will remain in this cocoon in a dormant state until next spring, when the yucca flower begins to blossom, and the cycle continues. 

The yucca moth is the primary pollinator of yucca plants, and its larvae depend on yucca seeds as a key food source. While the relationship is highly specialized, some yucca species can self-pollinate to a limited extent, and other insects, such as bees, may occasionally contribute to pollination. Without one, the other simply would certainly struggle to survive as they do today. Although yucca moths are native to the southwest areas of North America, as yuccas have expanded across the country, some species of yucca moths have also spread, although their distribution remains closely tied to the presence of their specific yucca host plants.

Perhaps the soapweed yucca that I stumbled across in New England autumn already had cocoons of yucca moths, lying hidden and dormant beneath my feet. 


Helena Venzke-Kondo is a student at Smith College pursuing psychology, education, and environmental studies. She is particularly interested in conversation psychology and the reciprocal relationship between people and nature. Helena is passionate about understanding how communities are impacted by climate change and what motivates people towards environmental action. In her free time, she loves to crochet, garden, drink tea, and tend to her houseplants. 


Sources and Further Reading:

Featured Creature: Staghorn sumac

What berries grow in crimson towers,
With tangy taste that puckers and sours?

Staghorn sumac! (Rhus typhina)

Staghorn Sumac (By Alicja via Pexels) 

Growing up, the slim outline of the staghorn sumac lined the perimeter of my backyard, reaching out its limbs, dotted with dark red berries. In the bored heat of summer, my brothers and I would grab the plant’s thin trunk and shake, raining berries down on us and gathering as many in our hands and pockets as we could. 

These wide and angular branches give the staghorn sumac its name, resembling the sharp antlers of a deer. And much like the thin, soft velvet that covers young antlers, the staghorn sumac’s stem is lined with a fine velvety layer of hair (or trichomes). In addition to serving as a protective layer from insects and the elements, this fuzz distinguishes the staghorn sumac from its common relative, the smooth sumac. These two plants share quite a few traits, both having pinnate (feather-like leaves) and producing red fruit. However, the smooth sumac, as the name suggests, lacks the fine velvety texture on its stems that characterizes the staghorn.

Budding branch of staghorn sumac (WikiMedia Commons by Krzysztof Ziarnek)

Planting roots

Beyond its striking leaves and vibrant berries, the staghorn sumac has a unique way of multiplying and thriving in the wild.

Growing from a large shrub to a small tree, the staghorn sumac ranges in size from about 3 to 30 feet in height. It is native to the eastern half of the United States and flourishes on the edges of forests, clearings, and dry, rocky, or gravelly soils. 

The staghorn is a colony forming plant, meaning that they cluster in groups of genetically identical clones, connected through an underground network of roots. The plant reproduces new clones via a process known as root suckering, where vertical growths originate from its root system. In addition to producing colonies, the staghorn sumac also naturalizes through self seeding, the dispersal of its own seeds. 

The flowers of a staghorn sumac are crimson, hairy, and bloom through May to July. Berries form tightly pyramidal clusters and are usually ripe by September, persisting into the winter, even after the staghorn sumac has lost its leaves, though this timeline can vary by geography. 

Staghorn sumac in the winter (photo by author)

The staghorn sumac is dioecious, male staghorn sumac and female staghorn sumac flower separately. The female staghorn sumac produces flowers and seed, while the male staghorn sumac only produces flowers. Due to the staghorn sumac’s colony forming habits we just learned about, and while not always the case, groves of predominantly female-only or male-only trees can be found. The colony of staghorn sumacs that grew around my childhood backyard were all seed bearing, and therefore a colony of female-only sumacs. 

Berries and Beyond

The berries produced by the female staghorn sumac hold the same shade of deep red as the flowers, but also have finer hairs and a denser, round body. As children, my brothers and I were convinced that these velvety, red berries were poisonous, and we handled them with a slight air of suspicion. However, despite their vibrant color, the berries lining our pockets were not poisonous.  While brightly colored fruits may have a reputation for being dangerous, many use bright colors to attract different pollinators. In this case, the bright Staghorn sumac berries are an edible fruit that has been used by humans for centuries. They are high in vitamin c and have a strong, tart taste. Upland game birds, songbirds, white-tailed deer, and moose also eat the tree’s leaves and twigs, while rabbits eat even the plant’s bark. 

The staghorn sumac has been utilized by Indigenous peoples in North America for a variety of different purposes—including traditional medicine—over hundreds of years. The fresh twigs of the staghorn sumac, once peeled, can be eaten, and have been used in dishes such as salads. These same twigs, along with the leaves, can be brewed into medicinal tea, traditionally used to relieve post pregnancy bleeding, alleviate respiratory conditions such as asthma, and assist in digestion. In addition, the roots of the staghorn sumac have historically been used for their supposed antiseptic and anti-inflammatory properties.

A common use for sumac berries is to make sumac-aide, a lemonade-like beverage with a strong, tart taste. Sumac-aide has been used for its believed medicinal properties, or simply as a refreshing summer drink. Sumac berries are ready to be harvested and used for culinary purposes during late summer, once they turn dark red in color.

Staghorn sumac (Josveo5a via WikiMedia Commons

The staghorn sumac trees that once grew lush in my childhood backyard are all gone now, leaving an empty patch of dirt in their wake. Although my family does not understand the events that lead to their demise completely, potential disease could be one contributing factor. The staghorn sumac is a resilient tree that is able to flourish under a variety of conditions. However, like all plants, the staghorn sumac is still susceptible to disease. Fungal diseases such as anthracnose, powdery mildew, and root rot, and bacterial diseases such as leaf spot can infect and kill groves of the staghorn sumac. In addition, invasive pests such as Japanese beetles can strip the staghorn sumac by skeletonizing its leaves and damaging flowers. 

Recently, I was walking along an icy boardwalk near my childhood home and noticed little fuzzy flowers, bright red against the white snow. It took me a closer inspection of these cute crimson flowers to notice the large group of staghorn sumac arching above the boardwalk and over my head. The trees bore their rich red flowers despite the other snow encrusted barren trees of the landscape. 

If you know where to look, the staghorn sumac is everywhere, dotting the sides of highways, bike paths, playgrounds, and perhaps even your own backyard.


Helena Venzke-Kondo is a student at Smith College pursuing psychology, education, and environmental studies. She is particularly interested in conversation psychology and the reciprocal relationship between people and nature. Helena is passionate about understanding how communities are impacted by climate change and what motivates people towards environmental action. In her free time, she loves to crochet, garden, drink tea, and tend to her houseplants. 


Sources and Further Reading:

Featured Creature: Strangler Fig

What creature grows backwards and can swallow a tree whole?

The strangler fig!

A strangler fig in Mossman Gorge, Queensland. (Image by author).

A Fig Grows in Manhattan

I recently wrapped a fig tree for the winter. Nestled in the back of a community garden, in the heart of New York City, I was one of many who flocked not for its fruit but for its barren limbs. An Italian cultivar, and therefore unfit to withstand east coast winters, this fig depends on a bundle of insulation to survive the season. The tree grows in Elizabeth Street Garden, a space that serves the community in innumerable ways, including as a source of ecological awareness.

Wrapping the fig was no small task. With frozen fingers we tied twigs together with twine, like bows on presents. Strangers held branches for one another to fasten, and together we contained the fig’s unwieldy body into clusters. Neighbors exchanged introductions and experienced volunteers advised the novice, including me. Though I’d spent countless hours in the garden, this was my first fig wrapping. My arms trembled as the tree resisted each bind. Guiding the branches together without snapping them was a delicate balance. But caring for our fig felt good and I like to think that after several springs in the sunlight it understood our efforts. Eventually, we wrapped each cluster with burlap, stuffed them with straw and tied them off again. In the end, the tree resembled a different creature entirely.

Growing Down

Two springs earlier, I was wrapped up with another fig. I was in Australia for a semester, studying at the University of Melbourne, and had traveled with friends to the northeast coast of Queensland to see the Great Barrier Reef. It was there that I fell in love with the oldest tropical rainforest in the world, the Daintree Rainforest. 

The fig I found there was monumental. Its roots spread across the forest floor like a junkyard of mangled metal beams that seemed to never end. They climbed and twisted their way around an older tree, reaching over the canopy where they encased it entirely.

The strangler fig begins its life at the top of the forest, often from a seed dropped by a bird into the notch of another tree. From there it absorbs an abundance of light inaccessible to the forest’s understory and sends its roots crawling down its support tree in search of fertile ground. Quickly then, the strangler fig grows, fueled by an unstoppable combination of sunlight, moisture, and nutrients from the soil. Sometimes, in this process, the fig consumes and strangles its support tree to death, hence its name. Other times, the fig can actually act as a brace or shield, protecting the support tree from storms and other damage. Even as they may overtake one tree, strangler figs also give new life to the forest.

As many as one million figs can come from a single tree. It is these figs that attract the animals who disperse both their seeds and the seeds of thousands of other plant species. With more than 750 species of Ficus feeding more than 1,200 distinct species of birds and mammals, the fig is a keystone resource of the tropical rainforest —the ecological community depends upon its presence and without it, the habitat’s biodiversity is at risk.

Fig-Wasp Pollination

Like the strangler fig, its pollination story is also one of sacrifice. Each fig species is uniquely pollinated by one, or in some cases a few, corresponding species of wasp. While figs are commonly thought of as fruit, they are technically capsules of many tiny flowers turned inward, also known as a syconium. This is where their pollination begins. The life of a female fig wasp essentially starts when she exits the fig from which she was born to reproduce inside of another. Each Ficus species depends upon one or two unique species of wasps, and she must find a fig of both the right species and perfect stage of development. Upon finding the perfect fig, the female wasp enters through a tiny hole at the top of the syconium, losing her wings and antennae in the process. She will not need them again, on a one way journey to lay her eggs and die. The male wasps make a similar sacrifice. The first to hatch, they are wingless, only intended to mate with the females and chew out an exit before dying. The females, loaded with eggs and pollen, emerge from the fig and continue the cycle.

The life cycle of the fig wasp.
(U.S. Forest Service, Illustration by Simon van Noort, Iziko Museum of Cape Town) 

The mutualistic relationship between the fig and its wasp is critical to its role as a keystone resource. As each wasp must reproduce additional fig species in the forest at different stages of development, there remains a constant supply of figs for the rainforest.

However, climate change threatens these wasps and their figs. Studies have shown that in higher temperatures, fig wasps live shorter lives which makes it more difficult for them to travel the long distances needed to reach the trees they pollinate. One study found that the suboptimal temperatures even shifted the competitive balance to favor non-pollinating wasps rather than the typically dominant pollinators. 

Another critical threat to figs across the globe is deforestation, in its destruction of habitat and exacerbation of climate change. In Australia, this threat looms large. Is it the only developed nation listed in a 2021 World Wildlife Fund study on deforestation hotspots, with Queensland as the epicenter of forest loss. Further, a study published earlier this year in Conservation Biology concluded that in failing to comply with environmental law, Australia has fallen short on international deforestation commitments. Fortunately, the strangler figs I fell in love with in the Daintree are protected as part of a UNESCO World Heritage Site in 1988 and Indigenous Protected Area in 2013.

Stewards of the Rainforest

The Daintree Rainforest has been home to the Eastern Kuku Yalanji people for more than 50,000 years. Aboriginal Australians with a deep cultural and spiritual connection to the land, the Eastern Kuku Yalanji have been fighting to reclaim their ancestral territory since European colonization in the 18th century. Only in 2021 did the Australian government formally return more than 160,000 hectares to the land’s original custodians. The Queensland government and the Eastern Kuku Yalanji now jointly manage the Daintree, Ngalba Bulal, Kalkajaka, and Hope Islands parks with the intention for the Eastern Kuku Yalanji to eventually be the sole stewards. 

Rooted in an understanding of the land as kin, the Eastern Kuku Yalanji people are collaborating with environmental charities like Rainforest Rescue and Climate Force to repair what’s been lost, reforesting hundreds of acres and creating a wildlife corridor between the Daintree Rainforest and the Great Barrier Reef. The corridor aims to regenerate a portion of the rainforest that was cleared in the 1950s for agriculture.

Upon returning to Cairns from the rainforest, we set sail and marveled at the Great Barrier Reef. My memories of the Daintree’s deep greens mingled with the underwater rainbow of the reef. At the Cairns Art Gallery the next day, a solo exhibition of artist Maharlina Gorospe-Lockie’s work, Once Was, visualized this amalgamation of colors in my mind. Gorospe-Lockie’s imagined tropical coastal landscapes draw from her work on coastal zone management in the Philippines and challenge viewers to consider the changes in our natural environment.

Maharlina Gorospe-Lockie, Everything Will Be Fine #1 2023
From the solo exhibition Once Was at the Cairns Art Gallery. (photo by author).

On the final day wrapping our fig in New York, I lean on a ladder above the canopy of our community garden and in the understory of the urban jungle. Visitors filter in and out, often stopping to ask what we’re up to. Some offer condolences for the garden and our beloved fig, at risk of eviction in February. We share stories of the burlap tree and look forward to the day we unwrap its branches.

The parallel lives of these figs cross paths only in my mind, and now yours. Perhaps also in the fig on your plate or the tree soon to be planted around the corner.


Jane Olsen is a writer committed to climate justice. Born and raised in New York City, she is driven to make cities more livable, green and just. She is also passionate about the power of storytelling to evoke change and build community. This fuels her love for writing, as does a desire to convey and inspire biophilia. Jane earned her BA in English with a Creative Writing concentration and a minor in Government and Legal Studies from Bowdoin College.


Sources and Further Reading: