Given the global decline of reserves of both rock phosphate and fossil fuel, this study poses the question – to what extent can microbial inoculants replace/reduce the use of synthetic fertilizer? The authors find that “dryland agriculture can benefit most from biofertilizers [microbial inoculants used as fertilizers]. Due to climate change, in the future there will be even more dryland areas globally. Biofertilizers are thus a promising option for sustainable agriculture” [Schutz 2018: 11]. More specifically:
Our comprehensive meta-analysis with studies from all over the world revealed that biofertilizers were found to be most effective in dry climates. Biofertilizer also improved PUE [phosphorus use efficiency] and NUE [nitrogen use efficiency] greatly. Furthermore, we found that biofertilizers possessing both N fixing and P solubilizing traits have the highest potential to improve the crop yields. Interestingly, AMFs, known for facilitating P nutrient uptake in plants, were on par with applications of biofertilizers with the combined traits of N fixation and P solubilization, indicating the big potential of AMFs as sole biofertilizer for most crops and climatic situations [Schutz 2018: 5].
Schutz, Lukas et al., 2018, Meta-analysis of Biofertilizer Application in Agriculture, Frontiers in Plant Science 8, https://www.frontiersin.org/articles/10.3389/fpls.2017.02204/full.