Featured Creature: Giraffes

What animal, despite having the same number of vertebrae, has a neck longer than the average human, has spot patterns as unique between individuals as our fingerprints, and despite their gentle appearance, can kill lions with a karate-style kick!?

A tower of Reticulated giraffes (G. reticulata)
Image credit: Bird Explorers via iNaturalist (CC-BY-NC)

Some might say this is quite the… tall order for my very first Featured Creature profile! (Hold the applause!)

One of my earliest memories regarding these unique icons of the African savanna was when I was around five years old. My parents and I were visiting the Southwick Zoo in Mendon, Massachusetts, when we came upon the giraffe enclosure. One of these quiet, lanky creatures lowered its head across the fence bordering the enclosure, and licked my dad on the face with its looooong, black tongue! Once the laughter had died down, a flood of questions rushed into my head:

Why DOES the giraffe have such a long neck?

How do they sleep at night?

And what’s the deal with those black tongues?

A Tall-Walking, Awkwardly-Galloping African Animal

Their scattered range in sub-Saharan Africa extends from Chad in the north to South Africa in the south, and from Niger in the west to Somalia in the east. Within this range, giraffes typically live in savannahs and open woodlands, where their food sources include leaves, fruits, and flowers of woody plants. Giraffes primarily consume material of the acacia species, which they browse at heights most other ground-based herbivores can’t reach. Fully-grown giraffes stand at 14-19 feet (4.3-5.7 m) tall, with males taller than females. The average weight is 2,628 pounds (1,192 kg) for an adult male, while an adult female weighs on average 1,825 pounds (828 kg).

A giraffe’s front legs tend to be longer than the hind legs, and males have proportionally longer front legs than females. This trait gives them better support when swinging their necks during fights over females.

Giraffes have only two gaits: walking and galloping. When galloping, the hind legs move around the front legs before the latter move forward. The movements of the head and neck provide balance and control momentum while galloping. Despite their size, and their arguably cumbersome gallop, giraffes can reach a sprint speed of up to 37 miles per hour (60 km/h), and can sustain 31 miles per hour (50 km/h) for up to 1.2 miles (2 km).

Herd of giraffes running in Tanzania, Africa

When it’s not eating or galavanting across the savanna, a giraffe rests by lying with its body on top of its folded legs. When you’re 18 feet tall, some things are easier said than done. To lie down is something of a tedious balancing act. The giraffe first kneels on its front legs, then lowers the rest of its body. To get back up, it first gets on its front knees and positions its backside on top of its hind legs. Then, it pulls the backside upwards, and the front legs stand straight up again. At each stage, the individual swings its head for balance. To drink water from a low source such as a waterhole, a giraffe will either spread its front legs or bend its knees. Studies involving captive giraffes found they sleep intermittently up to 4.6 hours per day, and needing as little as 30 minutes a day in the wild. The studies also recorded that giraffes usually sleep lying down; however, “standing sleeps” have been recorded, particularly in older individuals.

Cameleopard

The term “cameleopard” is an archaic English portmanteau for the giraffe, which derives from “camel” and “leopard”, referring to its camel-like shape and leopard-like coloration. Giraffes are not closely related to either camels or leopards. Rather, they are just one of two members of the family Giraffidae, the other being the okapi. Giraffes are the tallest ruminants (cud-chewers) and are in the order Artiodactyla, or “even-toed ungulates”.

A giraffe’s coat contains cream or white-colored hair, covered in dark blotches or patches which can be brown, chestnut, orange, or nearly black. Scientists theorize the coat pattern serves as camouflage within the light and shade patterns of the savannah woodlands. And just like our fingerprints, every giraffe has a unique coat pattern!

The tongue is black and about 18 inches (45 cm) long, able to grasp foliage and delicately pick off leaves. Biologists thinks that the tongue’s coloration protects it against sunburn, given the large amount of time it spends in the fresh air, poking and prodding for something to eat. Acacia giraffes are known for having thorny branches, and the giraffe has a flexible, hairy upper lip to protect against the sharp prickles.

Both genders have prominent horn-like structures called ossicones, which can reach 5.3 inches (13.5 cm), and are used in male-to-male combat. These ossicones offer a reliable way to age and sex a giraffe: the ossicones of females and young are thin and display tufts of hair on top, whereas those of adult males tend to be bald and knobbed on top.

An elderly adult male Masai giraffe at the Franklin Park Zoo, Boston, Massachusetts
Image credit: Sienna Weinstein

There is still some debate over just why the giraffe evolved such a long neck. The possible theories include the “necks-for-sex” hypothesis, in which evolution of long necks was driven by competition among males, who duke it out in “necking” battles over females, versus the high nutritional needs for (pregnant and lactating) females. A 2024 study by Pennsylvania State University found that both were essentially acceptable! Check out the graphic below for a good visualization. 

A graphic summarizing the evolution of the giraffe’s body based on gender needs
Image credit: Penn State University, CC-BY-NC-ND 4.0

A Flagship AND Keystone Species

Alongside other noteworthy African savanna species, such as elephants and rhinoceroses, giraffes are considered a flagship species, well-known organisms that represent ecosystems, used to raise awareness and support for conservation, and helping to protect the habitats in which they’re found. As one of the many creatures that generate public interest and support for various conservation efforts in habitats around the world, giraffes have a significant role.

Giraffes, like elephants and rhinos, are also classified as a keystone species–one that plays a crucial role in maintaining the health and diversity of their native ecosystems, as their actions significantly impact the environment and other species. What is it that giraffes do that impacts their local ecosystems and environment? By browsing vegetation high up in the trees, they open up areas around the bases of trees to promote the growth of other plants, creating microhabitats for other species. In addition, through their dung and urine, they help distribute nutrients throughout their habitat. Some acacia seedlings don’t even sprout and grow until they’ve passed through a giraffe’s digestive system! By protecting giraffes, we also contribute to protecting other plant and animal species of the African savanna and open woodlands!

The Life We Share

The woodlands and grasslands where giraffes live are shaped in part by those long necks and unique feeding habits. As they browse high in the canopy, they open up space for other plants and animals to thrive. These ecosystems aren’t something we built, they’re something we’re lucky to witness. And if we have a role to play, maybe it’s simply to make sure our presence doesn’t undo the work that nature is already doing so well.


Sienna Weinstein is a wildlife photographer, zoologist, and lifelong advocate for the conservation of wildlife across the globe. She earned her B.S. in Zoology from the University of Vermont, followed by a M.S. degree in Environmental Studies with a concentration in Conservation Biology from Antioch University New England. While earning her Bachelor’s degree, Sienna participated in a study abroad program in South Africa and Eswatini (formerly Swaziland), taking part in fieldwork involving species abundance and diversity in the southern African ecosystem. She is also an official member of the Upsilon Tau chapter of the Beta Beta Beta National Biological Honor Society. 

Deciding at the end of her academic career that she wanted to grow her natural creativity and hobby of photography into something more, Sienna dedicated herself to the field of wildlife conservation communication as a means to promote the conservation of wildlife. Her photography has been credited by organizations including The Nature Conservancy, Zoo New England, and the Smithsonian’s National Zoo and Conservation Biology Institute. She was also an invited reviewer of an elephant ethology lesson plan for Picture Perfect STEM Lessons (May 2017) by NSTA Press. Along with writing for Bio4Climate, she is also a volunteer writer for the New England Primate Conservancy. In her free time, she enjoys playing video games, watching wildlife documentaries, photographing nature and wildlife, and posting her work on her LinkedIn profile. She hopes to create a more professional portfolio in the near future.


Dig Deeper


Featured Creature: Macrotermes Termites

What is the second most consumed insect group in the world (by humans) that can build nests with heights up to 9 meters (29.5 feet) and has a symbiotic relationship with fungi?

Macrotermes carbonarius (Image Credit: Soh Kam Yung via iNaturalist (CC-BY-NC))

As a featured creature writer for Bio4Climate, I try to read through as many of our published pieces as possible, even those that pre-date my tenure. It’s a tall order, there are so many! Hidden alongside the grand humpback whale, the impressionable Pando, and the beautiful luna moth, I found Fred Jennings’ piece on the zombie ant fungus: an unpleasant looking insect-pathogenic fungus that attaches to ants’ exoskeletons and takes over their bodies from the inside out. It was a little grotesque, a little unsettling, and completely and utterly fascinating. 

I’ve been wanting to write about a creature that doesn’t usually make the highlight reel…something easy to overlook, but essential in its own way. My hope is to inspire curiosity (and appreciation) for the parts of nature that don’t always fit our ideas of beauty.

More Than Just Pests

When I think of termites I think about how people, especially homeowners, consider them pests. One of the first links that pops up in an online search for the word termites is the U.S. Environmental Protection Agency’s guide for how to identify and control them. But just as it’s unfair to call sloths lazy simply because they move slowly, it’s unfair to define termites only by their “pest” status. They weren’t ever “pests” until we made them so. 

Macrotermes vitrialatus (Image Credit: Craig Peter via iNaturalist (CC-BY-NC))

Macrotermes are fungus-growing termites that reside in tropical regions of Africa and Asia. These insects are larger than other common termites, the largest of all 330 species being the Macrotermes bellicosus, with queens reaching over four inches in length! Most of these bugs are dark brown, with some exceptions like the Macrotermes carbonarius, which are entirely black, and the Macrotermes gilvus, which have orange/red-brown heads.

Termites are a valuable part of many ecosystems. Like fungi, bacteria, and detritivores like millipedes, they decompose dead plant material, modifying the physical and chemical distribution of the soil. Creatures like termites restore soil that’s been degraded and play a key role in cellulose recycling, breaking down plants, wood, and paper into smaller molecules other organisms can use, and returning nutrients to the ecosystem. But, these termites are pretty special for a reason other than their role as ecosystem engineers.

Teamwork Makes the Colony Work

Macrotermes thrive thanks to teamwork, and a symbiotic partnership with a fungus that shares their life cycle. It’s remarkable that these termites (just like other creature populations) cooperate so well in such large numbers. Macrotermes colonies have a highly organized social system in which each insect has a role that makes life efficient and successful: workers gather food and build and maintain the nest/mound, soldiers use their strong jaws to protect the colony from predators like ants, and the queen and king reproduce. This social complexity is mirrored by the colony’s architecture. 

Macrotermes carbonarius (Image Credit: Dirk Mezger via iNaturalist (CC-BY-NC))

Termite mounds aren’t just shelters, they’re marvels of natural engineering. Built with purpose, these architectural feats regulate temperature and humidity to create the ideal environment for the termite’s fungal partner, Termitomyces, to grow. After foraging for wood or dead plant material, Macrotermes workers masticate and deposit it in chambers inside their nest, producing the perfect substrate for fungus to grow into a comb. Macrotermes cultivate these fungus gardens and feed on them while the fungus degrades plant material, resulting in a continuous supply of food for the termites. To stimulate the right conditions for Termitomyces to grow, macrotermes build their nests with air ducts and ventilation systems. As the fungus produces heat in the nest, workers can open or block individual tunnels that lead to the surface to regulate temperature and humidity. These structures are built to various heights, with some only one foot tall while exceptional ones can rise more than 30 feet. 

Macrotermes and Humans

Macrotermes termites are an important edible insect widely consumed throughout Africa, along with their fungus gardens. People use the bugs, mushrooms, and termite soil in medicinal practices. The soil can be used as fertilizer or as building material to make bricks and plaster houses. These insects are also used as bait and feed for livestock. Alongside these uses, macrotermes termites have a role in superstitious beliefs, their nests serving as burying places associated with the spiritual world.

Outside their habitat in urban environments, most macrotermes are unable to survive, so they aren’t considered pests like other termites because they don’t cause as much damage to wood structures like homes and buildings. In contrast, macrotermes can pose threats to agriculture by directly consuming crops, roots, and stems of plants. But, like nearly every other creature in the natural world, these bugs don’t live without some challenges of their own.

The largest threat to termites is changes in land use; particularly transitions to organized orchards and more intensified agricultural practices. As ecosystem engineers that contribute directly to the nutrient makeup of the soil in their ecosystem, the changes in land use can have damaging effects on the landscape and organisms throughout the food cycle.

Macrotermes carbonarius (Image Credit: budak via iNaturalist (CC-BY-NC)) 

Nature deserves to be seen in its full complexity, not just through the lens of what we find beautiful, helpful, scary, or annoying. When we only celebrate the vibrant colors, graceful shapes, or soothing sounds, we risk overlooking the strange, the hidden, and the essential. 


Abigail Gipson is an environmental advocate with a bachelor’s degree in humanitarian studies from Fordham University. Working to protect the natural world and its inhabitants, Abigail is specifically interested in environmental protection, ecosystem-based adaptation, and the intersection of climate change with human rights and animal welfare. She loves autumn, reading, and gardening. 




Dig Deeper


Featured Creature: European Starling

What species sang part of a Mozart concerto and got its own musical tribute in return?

European Starling (Image Credit: Наталия via iNaturalist

During my studies in urban governance, we took a course on complex systems thinking. I’ll spare you the technical details, but we learned that starling bird flocks were commonly used in the discipline to illustrate how complex systems work and emerge. The core idea was that complex systems are made up of many interacting components that, together, give rise to large-scale, coordinated behavior. 

Years later, after I’d moved to the southern end of Rotterdam, I was hanging out in my living room, looked out the window, and there it was: a gigantic flock of starlings swirling through the sky. It was one of the most breathtaking natural events I’ve ever had the privilege of witnessing. And honestly, in a city like this, it might be one of the only natural events you can witness from the comfort of your living room or backyard.

Since then, I’ve spent countless hours watching these flocks from my rooftop during the months when they migrate through the city. As mesmerizing as it is to see them dancing in the sky, it’s even more incredible to watch them land. Just behind my house is a community garden with a few tall trees. The starlings will form a massive swarm around a tree, circling it with this eerie coordination. Then, seemingly out of nowhere, one bird dives into the branches — and within seconds, hundreds follow. The sound that follows is something else entirely: the collective chirping of all those birds packed into one tree fills the whole neighborhood. It’s chaotic, but in the most beautiful way.

More Than a Blur in the Sky: A Closer Look at the Starling

I was often confused about what exactly a starling bird was. Their song was always striking to me, but I noticed something odd: two very different-looking birds seemed to be making the same kind of sounds. At first, I assumed it might be a gender difference. But after doing a little research, I learned something fascinating: starlings change their appearance with the seasons, adopting a specialized breeding plumage during the mating season.

In the fall and winter, starlings appear dark with cream-colored speckles scattered across their bodies. But in spring and summer, when males enter breeding season, they undergo a striking transformation. Their feathers turn glossy and iridescent, shimmering with greens and purples, especially along their nape, breast, back, and wings.

Many birds change their plumage to attract a mate. Ducks are a classic example you might already be familiar with. But what makes starlings unique is how they transition. Unlike most birds, which molt (shed and replace their feathers) before breeding season, starlings don’t actually molt at all.
Instead, they lose their spots through abrasion. The speckles we see in winter are just the cream-colored tips of their feathers. As the season progresses, these tips gradually wear off from contact and movement, revealing darker, melanin-rich parts of the feathers underneath. Melanin makes those parts more resistant to wear, so while the pale tips disappear, richer tones remain, just in time for mating season.

Interestingly, adult females don’t become as glossy or glittering as their male counterparts. They tend to retain more of their pale speckles, giving them a lighter, spottier appearance that makes them relatively easy to distinguish.

Nesting: Homes, Herbs, and the Hunt for a Male

With breeding plumage in place, unpaired males seek out suitable nesting sites and begin building nests to attract females. To impress, they decorate their bachelor pads with flowers, greenery, and even herbs. It’s theorized that the quantity and quality of these ornaments play a role in courtship, helping males stand out in a competitive mating environment. Interestingly, once a female chooses a mate, she typically disassembles the decorations he so carefully arranged.

Turns out, birds might also be into a bit of aromatherapy — when they add herbs to their nests, they seem to chill out and parent better. The cozy, scented setup is linked to more positive vibes during egg-sitting duty.

Another curious aspect of their nesting behavior is how females lay their eggs. A typical clutch consists of 4 to 6 eggs per year, but if the first egg is removed — by a predator, researcher, or accident — the female will sometimes continue laying more eggs in an effort to compensate and make the clutch “whole” again.

If the home decor isn’t enough to impress a mate, ambitious bachelors have another trick up their wings: their song. These birds are among nature’s finest impressionists.

Song: The Starling Bird’s Signature

European starlings have a rich and varied vocal repertoire — clicks, whistles, rattles, snarls — and an extraordinary talent for mimicry. They can imitate other birds, animals, and even human-made sounds like car alarms.

This video highlights the incredible variety of sounds starlings are capable of producing.

This song plays a key role in courtship. Males sing to mark territory, attract mates, and signal their fitness. Often, these songs are performed near a decorated nest, combining sound, sight, and scent into a single courtship display. Research suggests females may prefer males with larger song repertoires, which could indicate intelligence, health, or age. 

This vocal ability has long captivated humans. Mozart famously owned a pet starling that could sing part of one of his piano concertos. Urban legend holds that his piece A Musical Joke was inspired by the bird’s playful, unpredictable style, a feathered composer in his own right.Here’s a link to A Musical Joke if you’re curious, you decide!

Black Suns and Bird Ballets: The Science Behind Starling Flocks

As captivating as a single starling may be — with its shimmering feathers and complex song — their true magic emerges in numbers. When thousands gather, they move with a grace and synchronicity that seems almost unreal.

A murmuration of starlings at Gretna. (Image Credit:  Walter Baxter via WikiCommons)

Starling flocks, called murmurations, are most often seen in winter when the birds gather to roost in huge numbers. Just after sunset, they form breathtaking patterns in the sky before settling for the night.

These movements are often likened to a kind of dance or aerial ballet. When the flocks grow large enough, they can even appear to obliterate the setting sun, a phenomenon so striking it inspired the Danish term “sort sol,” or “black sun.”

These spectacular displays aren’t just for show — these murmurations help protect against predators by confusing and overwhelming their vision, making it difficult to single out any specific target. They also aid in communication and guide birds to communal roosts, especially during colder months

But how do these birds move with such perfect synchronicity? It almost looks choreographed, but it’s not like the birds wake up early and go to synchronized flight practice to drill until everyone hits their marks. What’s actually happening is that starling flocks are showing off a rare and fascinating phenomenon called scale-free correlation. Sounds complicated, sure, but it’s actually pretty simple.

It means that the birds’ movements are coordinated no matter where you look in the flock — whether you’re watching birds that are right next to each other or birds that are far apart. The changes ripple through the entire group almost instantly.

What’s even more amazing is that there’s no leader. Unlike geese, which follow a clear leader in formation, starling flocks are totally decentralized. Each bird watches and responds to just its 7 closest neighbors — that’s it. But because every bird is doing this at the same time, the entire flock ends up moving as one super-organism.

It’s like a message passing through the flock: when one bird moves, its neighbors adjust, and their neighbors adjust, and so on. This chain reaction spreads through the whole group — and that’s what we mean by scale-free correlation: coordination that works across any size or distance, without a central controller.

See the coordinated movement of thousands of starlings in this short video of a murmuration in action:

Watching them gather in those immense, swirling formations from my rooftop — the very phenomenon that first sparked my interest years earlier — brought everything full circle. What once was an abstract example in a systems theory class had become a living, breathing presence in my everyday life.

And what’s perhaps most astonishing of all is that this beauty isn’t just instinct — it’s adaptation in action.

Global Spread and Genetic Genius

Few avian species have been as globally successful as the European Starling (Sturnus vulgaris). Today, starlings can be found thriving on every continent except Antarctica — a remarkable feat for a bird species that, in many places, didn’t even exist 150 years ago.

North America’s starlings trace back to a strange little story: in the 1890s, a group of Shakespeare fans released about 100 birds in Central Park, hoping to populate the continent with every bird mentioned in his plays. Most of their efforts fizzled — but the starlings didn’t. They took off, quite literally, and today their descendants are spread far and wide across the U.S., Canada, and even into the Caribbean and Central America.

Elsewhere, starlings were introduced intentionally for pest control, such as in Australia, South Africa, and New Zealand, where they were thought to help manage insect populations in agricultural settings.

But what is it about this species that has allowed it to become so incredibly widespread?

Part of what makes starlings so successful is how adaptive they are. They’re just as comfortable in cities as they are in farmland, nesting in everything from building vents to backyard trees. As long as there’s something to eat, bugs, grains, scraps, they’ll make it work.

They’re also smart; starlings have big brains for their size and it shows. They can solve problems, learn from each other, and figure out new ways to find food when times get tough. And they’re almost never alone. Whether foraging, roosting, or migrating, they move as a group, watching, listening, adapting together. It’s part of what makes them so good at surviving in unfamiliar places.

Starlings also exhibit what’s known as environmental niche flexibility, meaning they can adjust their physical or behavioral traits in response to a wide range of environmental conditions. It enables them to inhabit ecosystems ranging from humid woodlands to dry grasslands with relative ease.

What’s more, they’re not just surviving across these ecosystems, they’re evolving. In just over the course of a century, starlings in North America have started adapting to their new homes. Arizona birds are showing signs of handling heat and dryness, while their cousins up in the Pacific Northwest are built for cool and damp. It’s a rare, real-time glimpse of evolution in motion.

But this incredible adaptability also brings starlings into conflict with human systems, particularly in agricultural landscapes, where their success reveals deeper tensions between wildlife and the ways we use the land.

Starling bird in flight. (Image Credit: Radu L via iNaturalist)

Fields of Conflict: Starlings and Agriculture

The more I learned about starlings, the more I realized their story is tangled up in ours, especially in how we farm. These birds didn’t set out to invade feedlots and barns. They ended up there because the open meadows they once thrived in are disappearing.

Starlings evolved to forage in grasslands, digging through the soil for grubs and larvae. But as fields are replaced by monocultures filled with pesticides, they’ve had to adapt — and fast. Livestock farms offered what the land no longer did: bugs in the soil, water to drink, and plenty of places to nest. It’s not that they prefer our barns. It’s just that there’s nowhere else to go.

The irony is that what farmers often see as nuisance behavior is really just resilience in action, starlings making do in a landscape that’s no longer built for them.

For these farmers, starlings can be a real headache. They sneak into barns, eat livestock feed, and leave behind messes that can damage equipment and pose health risks. And they’re clever, most scare tactics only work for a little while before the birds figure them out. Remember those big brains? So while their presence speaks to larger ecological loss, the day-to-day impact is very real for people trying to make a living off the land.

Despite their reputation as a nuisance in agriculture, starlings are actually experiencing serious population declines — not only in their native range but also in parts of their introduced range, including the UK and North America.

This is often overlooked in public discourse. In the UK, for instance, starlings are now a protected species, due to sharp population drops attributed largely to the loss of high-quality foraging habitats and changes in land use.

Interestingly, their decline has not led to a rebound in the native species they’re often accused of displacing — suggesting that habitat loss, not species competition, may be the deeper issue.

(Image Credit: Alena Fionina via iNaturalist

Rethinking Narratives

It’s easy to label starlings as pests — especially in an industrial system where every loss counts. But that framing often misses the bigger picture. Their presence on farms isn’t just about opportunism; it’s about what’s missing from the land. If pastures were healthier and ecosystems more intact, maybe starlings wouldn’t need to forage in feed troughs or nest in sheds.

If agriculture were managed more sustainably, with more permanent pasture and diversified cropping systems, it’s likely that starlings would rely less on feed troughs and barns. In this light, controlling starling populations without addressing the root causes of their shifting behavior may be shortsighted.

Conservation in their native range should focus on restoring pasture ecosystems and rebuilding invertebrate populations. In their invasive range, managing their numbers in sensitive areas is important — but must go hand-in-hand with reconsidering how intensive farming practices shape the ecological playing field.

Each season, I look up from the same rooftop, and the starlings are there — not thriving, not vanishing, just enduring in the spaces we’ve left behind. Their presence doesn’t signal ecological balance, nor does it mark collapse. Instead, it speaks to something quieter: the capacity of life to persist in the margins, to find rhythm in disruption, and to adapt — however imperfectly — to a world in flux. In them, I see the echoes of our choices and the quiet, complicated resilience of the wild.


Lakhena Park holds degrees in Public Policy and Human Rights Law but has recently shifted her focus toward sustainability, ecosystem restoration, and regenerative agriculture. Passionate about reshaping food systems, she explores how agroecology and land management practices can restore biodiversity, improve soil health, and build resilient communities. She is currently preparing to pursue a Permaculture Design Certificate (PDC) to deepen her understanding of regenerative practices. Fun fact: Pigs are her favorite farm animal—smart, playful, and excellent at turning soil, they embody everything she loves about regenerative farming.



Dive Deeper


Featured Creature: Penguins

What creature is able to control blood flow to their extremities, has eyes adapted for underwater vision, and spends 75% of its life at sea?

Adélie penguins, Pygoscelis adeliae
Image Credit: Nidhin Cyril Joseph via iNaturalist (CC-BY-NC)

Now that I’ve been writing for Biodiversity for a Livable Climate for a while, I’ve received several requests from friends and family for creatures to feature. This piece is the result of a request from my close friend’s two children, who, after listening to their parents read my feature on sloths, emphatically asked if I could write about penguins next.

Who am I to deny such an impassioned request?

While many penguins live in more temperate climates, today we’re putting the spotlight on the species that live in Antarctica and its surrounding islands.

When people share their ideas with me, it always gives me inspiration and prompts me to ask myself:

“What does this creature have to teach me about its life on Earth?” If you’re a penguin, the answer is, “quite a lot!”

Meet Our Flightless Friends

Chinstrap penguin, Pygoscelis antarcticus
Image Credit: Greg Lasley via iNaturalist (CC-BY-NC)

If you play charades and act out the word “penguin,” you will probably start waddling, right? While the tendency to teeter back and forth on land is one of penguins’ most widely known (and adorable) characteristics, there is a lot more to them than that. Their countershaded plumage, flippers, and underwater vision are all features that make life as a penguin possible – and unique. But before we get to that, let me introduce you to our flightless friends.

Out of the 18 species of penguins, only eight of them live in the Antarctic. Out of those eight, only two species, Emperor and Adélie penguins, live exclusively on the ice shelves of the Antarctic continent. The rest of these cold climate birds – Macaroni, Gentoo, Chinstrap, Southern and Northern Rockhopper, and King penguins – live on the Antarctic Peninsula and surrounding sub-Antarctic islands.

In addition to their typical black and white feathers, many have distinctive features like red-orange beaks, or pale pink feet. Red eyes and yellow crests identify species like Macaroni penguins, and King and Emperor penguins can be recognized by the orange and yellow plumage on their chests and cheeks.

Here’s something you might not know: one in every 50,000 penguins are born with brown, cream-colored feathers rather than with black plumage. This washed-out look is called isabelline. While it’s not the same as albinism (which is defined by a complete lack of pigmentation) isabellinism is the partial loss of pigment.

Isabelline King penguin, Aptenodytes patagonicus
Image Credit: Sebastian Traclet via iNaturalist (CC-BY-NC)

The Birds that Swim

Penguins are highly specialized for life in ocean water, and have many adaptations that suit their lifestyle in their environment. These beautiful birds have streamlined bodies that are equipped with a well-developed rib cage, wings that have evolved into flippers with shorter and stouter bones, and a pronounced keel, or breastbone, which provides an anchor for the pectoral muscles that move the flippers. Penguins might not be able to fly in the air, but they propel themselves with incredible agility into “flight” underwater with their flippers. In the water, Gentoo penguins (pictured below) are the fastest of all penguins, and of all swimming birds. While searching for food or escaping predators, they reach speeds up to 36 km (22 miles) per hour.

Their eyes, which are their primary means of locating evasive prey and avoiding predators and fishing nets, are adapted for underwater vision. And these aren’t the only traits that make penguins incredibly well-fit for aquatic life. Their short feathers, which minimize friction and turbulence as they swim, are denser than most other birds, with up to 100 feathers per square inch in some species, such as the Emperor penguin. This close spacing helps keep penguins warm, preserving a layer of air under their plumage that not only insulates them from the cold water, but also provides them with buoyancy.

Gentoo penguins, Pygoscelis papua
Image Credit: Laura Babahekian via iNaturalist (CC-BY-NC)

Penguins also conserve heat in other ways. They possess this remarkable vascular countercurrent heat exchanger called a humeral arterial plexus – a system of heat exchange between opposing flows of blood. This allows cold blood to absorb heat from outflowing blood that has already been warmed, limiting heat loss in their flippers and feet, ultimately helping these small animals survive in such cold.

What Else Do Penguins Have to Teach Us?

We already know that most penguins have darker feathers on their backs and wings, and lighter-colored feathers on their bellies, but why? Called countershading, it’s actually a form of camouflage. For predators like orcas, it is difficult to look up from below and distinguish the white belly of a penguin from the water’s surface and sky above it. Similarly, from above, the bird’s dark back blends into the darker ocean depths. It’s speculated that birds with extreme plumage irregularity, like isabelline penguins that don’t have the advantage of camouflage, have a decreased life expectancy as a result of increased predation. However, research shows that isabelline individuals have survived for many years.

Young Gentoo penguin, Pygoscelis papua
Image Credit: Hugo Hulsberg via iNaturalist (CC0)

While most penguins share incubation duties (one parent broods while the other forages at sea, switching when the other returns) species like the Emperor and King penguins have unique strategies where the males take on greater, or even sole, responsibility. But, the parents’ warm bodies are not the only thing protecting their babies: the eggs of cold-climate penguins are well-adapted to their adverse nesting environment too, with thick shells that reduce the chick’s dehydration and the risk of breakage. Once a clutch hatches and the parents go out to hunt, on their way back to their colony, some penguins use the sun as a directional aid while others rely on landmarks or even the Earth’s magnetic field to navigate, like a built-in gps. Once safely on land, parents use unique vocal calls to locate and reunite with their baby.

Did you know that even though a group of penguins is called a colony, they can also be called a “waddle” on land, and a “raft” in the water? Still, penguins don’t waddle all the time. Besides their awkward and amusing side to side rock, penguins also jump with both feet together to move more quickly across steep or rocky terrain. Can you guess what the Southern and Northern Rockhopper penguins were named for? If penguins want to conserve energy while moving quickly, they’ll do something called tobogganing, sliding on their bellies across the snow while using their feet to propel and steer themselves.

Northern Rockhopper penguin, Eudyptes moseleyi
Image Credit: whale_nerd via iNaturalist (CC-BY-NC)

What is the Penguin’s Role in its Ecosystem?

Regardless of which ecosystem a creature calls home, Earth’s organisms always have a more significant role in their environment than we first realize. Penguins are an important part of land and ocean ecosystems. Adult penguins are prey for sharks, orcas, and leopard seals, and penguin eggs/chicks serve to sustain other land predators like pumas, mongooses, and many seabirds like skuas, petrels, and sheathbills. Our aquatic fliers use their powerful jaws and spiny tongues to grip their quarry, eating krill, small fish, crabs, and squid, and getting nutrients from the rich, well-oxygenated waters of their ecosystem. Penguins then in turn fertilize the landscape with the nutrients like nitrogen, phosphorus, and organic carbon from their ocean foraging.

Penguins also play a key role in their colony’s survival. They are incredibly social creatures, and as a result of the extreme Antarctic conditions they live in, huddle together to stay warm during violent winter storms, even rotating so each penguin gets a turn at the center of the heat pack. Many penguin species form long-term pair bonds, fostering better collaboration, sharing of responsibilities, and improving the success of breeding over time. But, some have high divorce rates, switching mates in different breeding seasons.

Emperor penguins, Aptenodytes forsteri
Image Credit: Greg Lasley via iNaturalist (CC-BY-NC)

Threats

Most penguin specie populations are declining, with nine out of the 18 species classified as endangered or vulnerable on the IUCN Red List.

While the Antarctic Treaty has provided some legal protections for penguins, these birds are still at risk. You might have already guessed one of the reasons why: climate change. The rapid increase in temperature around the globe is altering oceanic conditions and melting sea ice, threatening penguins’ food supply, breeding grounds, and the delicate natural infrastructure of water and ice that sustains their way of life. In fact, we’ve recorded a correlation between record low sea ice in 2022 and the first-ever known large-scale breeding failure of Emperor penguins, an episode in which few (or nearly none at all) chicks are born.

Penguins are also at risk from pollution, caused by the usual suspects: littering and ecological disasters like oil spills. Development projects threaten nesting sites, and unsustainable and irresponsible fishing practices increase competition for available food in the sea.

And just last year, H5N1, so-called “bird flu,” was detected in the Antarctic region. Due to their dense breeding practice, the looming threat to penguin colonies is significant if the virus continues to spread around the region and continent.

Emperor penguins, Aptenodytes forsteri 
Image Credit: Greg Lasley via iNaturalist  (CC-BY-NC)

Life on Earth

Some of these risks are more dangerous or difficult to combat than others, but doing our part to help protect penguins is not a hopeless cause. We can support marine protected areas that provide refuge for vulnerable species like penguins and conservation organizations that focus on preserving penguin populations and their habitats. We can spread awareness about the threats they face, advocate for the nature-based solutions that keep the Antarctic cool, and do our part to keep our oceans clean.

I’ve come to understand that these penguins that dwell in some of the coldest places on Earth are some of most resilient animal species on Earth. Despite the challenges their environment throws at them, they are strong and patient, and work together to survive and thrive.

Now, join me if you will in taking a deep, collective breath before I present this to some tough critics, my friend’s children. 🙂


Abigail Gipson is an environmental advocate with a bachelor’s degree in humanitarian studies from Fordham University. Working to protect the natural world and its inhabitants, Abigail is specifically interested in environmental protection, ecosystem-based adaptation, and the intersection of climate change with human rights and animal welfare. She loves autumn, reading, and gardening.


Sources and Further Reading


Featured Creature: Kingfisher

What creature often looks blue, but isn’t, is found on every continent but Antarctica, and inspired a train’s design?

Kingfishers! (Alcedinidae)

 Patagonian Ringed Kingfisher, Megaceryle torquata ssp. stellata
(Image Credit: Amelia Ryan via iNaturalist)

Kingfishers are kind of like snowflakes. They both float and fly through the air, and no two are really alike. It’s what I love so much about them. Each kingfisher presents characteristics unique to their own lifestyle. They make me think of people. Like kingfishers, we live almost everywhere on Earth and we’ve all adapted a little differently to our diverse environments. I hope as you get to know the kingfisher, you’ll start to feel a small connection to these birds as I have.

Kingfishers are bright, colorful birds with small bodies, large heads, and long bills. They’re highly adaptable to different climates and environmental conditions, making them present in a variety of habitats worldwide. Many call wetland environments like rivers, lakes, marshes, and mangroves home. Now, their name might lead you to think all kingfishers live near these bodies of water, but more than half the world’s species are found in forests, near only calm ponds or small streams. Others live high in mountains, in open woodlands, on tropical coral atolls, or have adapted to human-modified habitats like parks, gardens, and agricultural areas.

Even so, you’re most likely to spot them in the tropical regions of Africa, Asia, and Oceania, but they can also be found in more temperate regions in Europe and the Americas. Some species have large populations and massive geographic ranges, like the Common Kingfisher (Alcedo atthis), pictured above, which resides from Ireland across Europe, North Africa and Asia, as far as the Solomon Islands in the Pacific. Other kingfishers (typically insular species that evolved on islands) have smaller ranges, like the Indigo-banded Kingfisher (Ceyx cyanopectus), which is only found in the Philippines.

Birds of a Feather

Kingfishers are small to medium sized birds averaging about 16-17 cm (a little over 6 inches) in length. They have compact bodies with short necks and legs, stubby tails and small feet, especially in comparison to their large heads and long, pointed bills. While many species are proportioned the same way, some are quite distinct. Paradise Kingfishers (Tanysiptera), which are found in the Maluku Islands and New Guinea like the one pictured below, are known for their long tail streamers. The African Dwarf Kingfisher (Ispidina lecontei) is the world’s smallest kingfisher at just 10 cm (barely 4 inches) long, and is found in Central and West Africa. The largest is the Laughing Kookaburra (Dacelo novaeguineae), coming in at a whopping 41-46 cm (15-18 inches) long, and is native to Australia.

Now, I know what you’re thinking: ‘Wait, are kookaburras and kingfishers the same thing? Sometime. Out of all 118 species, only four go by the name kookaburra: the Laughing Kookaburra (Dacelo novaeguineae), the Blue-winged Kookaburra (Dacelo leachii), the Spangled Kookaburra (Dacelo tyro), and the Rufous-bellied Kookaburra (Dacelo gaudichaud). Native to Australia and New Guinea, the kookaburra are named for their loud and distinctive call that sounds like laughter. Sometimes their cackles can even be mistaken for monkeys!

So,  are they as colorful as everyone says?

Yes! If you ask anyone who has seen a kingfisher to describe what it looks like, they will most likely go on and on about its color. Kingfishers are bright and vividly colored in green, blue, red, orange, and white feathers, and depending on the species, can be marked by a single, bold stripe of color. These features all accent the bird’s most recognizable feature, which is the blue plumage on their wings, back, and head. But here’s where things get interesting: Kingfishers don’t actually have any blue pigment in their feathers.

So, what gives? It’s something called the Tyndall effect. What’s happening is that tiny, microscopic keratin deposits on the birds’ feathers (yes, the same keratin that’s in your hair and nails) scatter light in such a way that short wavelengths of light, like (you guessed it) blue, bounce off the surface while all others are absorbed into the feather.

It sounds a little strange, but you see it every day. It’s why we see the sky as blue, too.

Azure Kingfisher, Ceyx azureus (Image Credit: David White via iNaturalist)

Are kingfishers Really Kings of Fishing?

Yes! And no. Kingfisher species are split into three subfamilies based on their feeding habits and habitats: the Tree Kingfishers (Halcyoninae), the River Kingfishers (Alcedininae), and the Water Kingfishers (Cerylinae). Despite their name, many of these birds primarily prefer insects, taking their prey from the air, the foliage, and the ground. They also eat reptiles (like skinks and snakes), amphibians, mollusks, non-insect arthropods (like crabs, spiders, scorpions, centipedes, and millipedes), and even small mammals like mice.

Tree Kingfishers reside in forests and open woodlands, hunting on the ground for small vertebrates and invertebrates. River Kingfishers are more often found eating fish and insects in forest and freshwater habitats. Water Kingfishers, the birds found near lakes, marshes, and other still bodies of water, are the fishing pros, specialize in catching and eating fish, and are actually the smallest subfamily of kingfishers, with only nine species.

Because the diets of kingfishers vary, so does the size and shape of their bills. Even though all species have long, dagger-like bills for the purpose of catching and holding prey, those of fishing species are longer and more compressed while ground feeders have shorter and broader bills that help them dig to find prey. The Shovel-billed Kookaburra (Clytoceyx rex) has the most atypical bill because it uses it to plow through the earth looking for lizards, grubs, snails, and earthworms. 

Shovel-billed Kookaburra, (Clytoceyx rex) 
(Image Credit: Mehd Halaouate via iNaturalist)

Can the blue-but-not-really-blue kingfisher get any more interesting? 

Oh yes, yes it can. Ready for another physics lesson? Kingfishers have excellent binocular vision, which means they’re able to see with both eyes simultaneously to create a single three-dimensional image, like humans. Not only that, but they can see in color too! But what makes them so adept at catching fish is their capability to compensate for the refraction of light off water.

When light travels from one material into another (in this case, air into water), that light will refract, or bend, because the densities of air and water are different. This makes objects look as though they are slightly displaced when viewed through the water surface. Kingfishers are not only able to compensate for that optical illusion while hunting, but they also can accurately judge the depth of their prey as well. 

But, triangulating underwater prey is only half the battle. Then you’ve got to catch it.

Fishing species of kingfishers dive no more than 25 cm (10 inches) into the water, anticipating the movements of their prey up until impact. Again, what happens next differs depending on which kingfisher we’re talking about. Many have translucent nictitating membranes that slide across their eyes just before impact to protect them while maintaining limited vision. Others, like the Pied Kingfisher (Ceryle rudis leucomelanurus), actually have a more robust bony plate that slides out across its eye when it hits the water—giving greater protection while sacrificing vision.

Pied Kingfisher in action

Kingfishers usually hunt from an exposed vantage point, diving rapidly into the water to snatch prey and return to their perch. If the prey is large (or still alive), kingfishers will kill it by beating it against the perch, dislodging and breaking protective spines and bones and removing legs and wings of insects. The Ruddy Kingfisher (Halcyon coromanda) native to south and southeast Asia, removes land snails from their shells by smashing them against stones on the forest floor.

Learning from kingfishers

Occupying a place fairly high in their environments’ pecking orders (trophic level) makes kingfishers susceptible to effects of bioaccumulation, or the increasing concentration of pollutants found in living things as you climb the food chain. This phenomenon, coupled with the kingfisher’s sensitivity to toxins, makes the bird a fairly reliable environmental indicator of ecosystem health. If a kingfisher population is strong, that can indicate their habitat is healthy because the small aquatic animals they feed on aren’t intaking poisons or pollutants. When problems are detected in a kingfisher population, it can serve as an early warning system that something more systemic is wrong.

But that’s not the only thing we can, or have learned, from kingfishers. In 1989, Japan was looking for a way to redesign its Shinkansen Bullet Train to make it both faster and quieter. As the train flew through tunnels at 275 km/h, massive amounts of pressure would build up, reigned in by the front of the train and the tunnels’ walls. Upon exiting the tunnels, that pressure would release, sending roaring booms through the homes of those living nearby. Engineer Eiji Nakatsu was not only the project’s lead, but birdwatcher as well. Noting the kingfisher’s ability to plunge into dense water at incredible speeds with hardly a splash, Nakatsu and his team remodeled the front of the train with the bird’s beak in mind. The result not only solved the problem of the boom, but also allowed the train to travel faster while using less energy.

Kingfishers: A Little More Like You Than You Think

In learning  about the kingfisher, I saw a little bit of us. We all come from the same family, even if we each do things a little differently.  I think for me, this gets to the root of why finding our connections with all living things matters, not just because they give us inspiration to solve human problems or because we depend on them to keep natural systems in balance, but because this is just as much their Earth as ours. 

Let’s do our part,

Abigail


Abigail Gipson is an environmental advocate with a bachelor’s degree in humanitarian studies from Fordham University. Working to protect the natural world and its inhabitants, Abigail is specifically interested in environmental protection, ecosystem-based adaptation, and the intersection of climate change with human rights and animal welfare. She loves autumn, reading, and gardening.


Sources and Further Reading:

Featured Creature: Red kite

What acrobatic raptor was so essential to medieval public health, killing it was a crime and it became the national bird of Wales?

The red kite (Milvus milvus)!

Tim Morgan (CC via Pexels)

Nature really thinks of everything.

I was back on my run through Madrid’s Casa de Campo, the 4,257 acre public park and preserve where I found Feature Creature inspiration in the form of a sickly hare a few weeks ago. After spending several minutes observing the hare, I continued as my run opened into a large clearing. A cinematic scene rolled out before me, as a red kite (milvus milvus), one of the hare’s natural predators, dropped out of an umbrella pine and flew off before me.

Maybe it was just my own naivety, but it was a special moment for me. You see, I’d run the park many times before, but rarely looked any further than the trail in front of me. Instead, this time I tried to pay attention to the web of life around me, and how each strand of it, living or not, connected with the others around it.

Take that red kite. It is an animal that works in service of its environment with a body and design that, in turn, work in near perfect service of it.

Nature’s cleanup crew

The red kite’s nesting range stretches in a broad band from the southern corner of Portugal, up through the Iberian Peninsula, central France, and Germany, before reaching the Baltic states. Smaller populations are also found in Mediterranean islands, coastal Italy, and the British Isles, where reintroduction campaigns in the 1980’s successfully revived its numbers.

They prefer to nest at the edge of woodlands, enabling quick and easy access to the open sky and landscape, not unlike how I look for an apartment within walking distance to the metro, or how a commuter in the suburbs might prefer to live a short drive from a highway or major thoroughfare on ramp. But wherever the red kite calls home, it has an important job to do.

The red kite is, first and foremost, a scavenger. Its diet consists primarily of carrion—dead animals, often livestock and game. By feeding on these carcasses, the red kite acts as a natural janitor and ultimately helps recycle nutrients back into the soil and surrounding environment.

When a scavenger like the red kite feasts on a dead animal, it kickstarts nature’s process for removing a carcass from (or to!) the environment. In feeding, they speed up the process of decomposition by physically breaking down the body and handing off a more manageable scene to smaller organisms like insects, bacteria, and fungi.

These insects and microbes release nutrients like nitrogen, phosphorus, and carbon into the soil as they break down the red kite’s leftovers. These nutrients enrich the soil, promoting plant growth, supporting other forms of life in the ecosystem, and maintaining essential geosystems.

It’s humbling. What seems brutal or grotesque—feasting on dead animals—is really an elegant solution from nature to each life’s inevitable end.

Plasticity

While foraged carrion can make up the majority of the red kite’s diet (upwards of 75%), it is also an agile and capable hunter of hares, birds, rodents, and lizards, respectably quick prey in their own right. A deeply forked tail acts like a rudder, providing precision flight control when on the hunt.

Red kite displaying its distinctive forked tail
Stephen Noulta (CC via Pexels)

This remarkable agility serves another purpose: communication. The red kite pairs a variety of unique vocalizations with striking physical displays, especially during courtship. And man, on that front does it deliver. It’s as if, in a bid to outdo the more visually aesthetic displays of other birds like parrots and peacocks, the red kite said, “alright, I see your colorful feathers and raise you tandem, spiraling corkscrew dives.” It’s worth taking a few seconds to watch.

Red kites locked in a dive

This is all to say that the red kite is well-equipped to meet the demands of its environment, whether foraging or hunting. They have been observed changing their foraging behavior and diet based on food availability and changing environmental conditions. While this level of flexibility, or plasticity, is found among other raptors, what makes the red kite stand out in this regard is its success adapting to both rural and increasingly urbanized environments.

A connected, complicated story

It’s difficult to tell the story of the red kite without understanding the species’ relationship with us, with humans.

A natural & social scavenger, the red kite’s role in our story goes back almost as long as we’ve been hunting, practicing agriculture, and leaving waste in the streets. Our complex relationship spans centuries and reflects our evolving attitudes toward wildlife, shifting dynamics of human environments, and the species’ own plasticity. In the middle ages, the red kite was a common sight in European cities, and especially London, where it acted as a natural street cleaner, scavenging for scraps and waste in the then-squalid streets. In fact, it was protected by law, and harming one was a punishable offense, as its presence was crucial to maintaining urban sanitation.

Red kites depicted circling above London
Bredfield Wildlife Friendly Village

Attitudes began to shift however as human settlements expanded and agricultural practices intensified. The birds came to be seen as vermin, threatening livestock and hunting game populations. This, combined with a broader adoption of poison to control other animals like foxes, led to a dramatic decline in red kite populations. By the turn of the 20th century, the red kite had been pushed to near extinction in many parts of Europe. As few as a handful of pairs were believed to have survived in remote parts of Wales.

But as part of larger, global conservation trends, red kite reintroduction programs took off in the 1980’s, particularly in the UK. These efforts were successful, with Royal Society for the Protection of Birds operations director Jeff Knott declaring that it “might be the biggest species success story in UK conservation history.”

As I’ve come to understand it, this recovery is not so much the end of a story, but the beginning of a new, equally complicated chapter in Europe’s story with the red kite. Bird populations have rebounded, and are now learning how to live in a densely populated, 21st century world. Ever the survivors, red kites are adapting to modern urban and semi-urban environments. In southern England, they’ve once again become a common sight, soaring over towns and cities as they did hundreds of years ago, and foraging for food in suburban gardens.

Red kites soar above Barton-le-clay, UK
bitsandbugs (CC via iNaturalist)

Raised on a steady diet of Planet Earth, Animal Planet, and Nat Geo, I think it was easy to see “nature” as a separate thing we’re siloed off from in our built environments, something wonderful and to be safeguarded in a separate place, something we can enter and exit at our leisure. It’s evident even in the way we collectively discuss it. We talk about “being out in nature,” “escaping to the outdoors,” “getting away from it all.”

And sometimes it takes a bird like the red kite to remind you that nature doesn’t exist separately from us. The red kite doesn’t necessarily see the Iberian savannah as any more or less wild than a British village. Where there is any life, there is an ecosystem.

Running to catch the next creature,
Brendan


Brendan Kelly began his career teaching conservation education programs at the Columbus Zoo and Aquarium. He is interested in how the intersection of informal education, mass communications and marketing can be retooled to drive relatable, accessible climate action. While he loves all ecosystems equally, he is admittedly partial to those in the alpine.  


Sources and Further Reading:

Featured Creature: Bearded Vulture

What handsome creature dyes its feathers and almost exclusively eats bones?

The bearded vulture!

Photo by Marco Pagano on Unsplash

The bearded vulture (Gypaetus Barbatus) is a bird of prey known by many names including lammergeier, quebrantahuesos, boanbrüchl, and ossifrage.

The origin of these monikers come from the bird’s unique diet – bones. While most vultures pick off the meat on a carcass, the bearded vulture prefers to consume the skeleton itself. Over 80% of their diet consists solely of bones.

Weighing in at about 16 pounds and equipped with a wingspan of over 9 feet, bearded vultures are among the top ten largest birds of prey in the world. They use their substantial size to hoist the bone of their choice from the skeleton to the sky. They fly high enough to drop it onto a clifftop or boulder to break the bone into smaller, bite-sized pieces which they then swallow whole.

What makes these birds capable of digesting bone is the strength of their stomach acid. Bearded vultures have a stomach acid of nearly zero pH. This extreme acidity dissolves bone within 24 hours. To put this in perspective, humans have a stomach acid pH of about 2 while battery acid has a pH of about 0.8. Bearded vultures are the only carnivores capable of completely digesting bone.

Photo by Mr Wildclicks from Pexels

Striking Appearance

Bearded vultures appear different from most other vultures due to the lack of a bald head. Most vultures are known for having no feathers around their head and neck which helps them remain clean when scavenging carrion. Bearded vultures, because of their chosen bone-based diet, do not need this adaptation, and sport a feathered head. Adults have white feathers along their body, chest, and face while their wings are dark brown. Black tufts protrude from their chin which gives them their modern namesake of bearded vulture. 

Bearded vultures have large, glacier-white eyes that help them spot carcasses from the sky. As Old World vultures, their sense of smell is not advanced and they rely primarily on their eyesight when scavenging. When threatened or excited, the scleral ring around their eyes turns a bright red.

Bearded vultures have a unique propensity for the color red, so much so that they dye their white feathers a rusty vermilion. These birds will seek iron-oxide rich pools of muddy water or dust and bathe in it to color themselves a red-orange hue. Researchers are unsure of why they do this. Some posit that it is a sign of status – the redder the bird, the higher the seniority. Others believe the iron-oxide coloring helps prevent infections when breeding. Whatever the reason, bearded vultures paint themselves into a real-life phoenix. 

Photo by David Ruh from Pexels

Habitat and Ecological Role

Bearded vultures call the mountainous regions of Eurasia, East Africa, and parts of the Middle East their home. They prefer to live in areas that grant them the best visibility such as remote mountain ranges, steppes, canyons, and alpine valleys.

These birds tend to fly at high altitudes of about 6,500 feet above sea level. They utilize updrafts to ride the air currents which helps them conserve energy and glide for many miles.

In the early 1900s bearded vultures were hunted in Europe due to a false myth that they supposedly preyed upon children and livestock. The population in this area declined and is still recovering today. Currently, humans are the greatest threat to bearded vultures as habitat loss and poisoning endanger the remaining populations. The species is listed as near threatened by the IUCN. 

Bearded vultures are an incredibly important species for the ecosystem because they act as nature’s garbage disposal. They help clean the environment of carcasses and diseases which keeps other species healthy.

Soaring away for now,
Joely


Joely Hart is a wildlife enthusiast writing to inspire curiosity about Earth’s creatures. She holds a Bachelor’s degree in creative writing from the University of Central Florida and has a special interest in obscure, lesser-known species.


Sources and Further Reading:
https://www.beardedvulture.ch/beardedvulture/biology
https://faunafocus.com/portfolio/bearded-vulture
https://safarisafricana.com/largest-birds-of-prey
https://factanimal.com/bearded-vulture/
https://digital.csic.es/bitstream/10261/64406/4/functilife.pdf
https://pubmed.ncbi.nlm.nih.gov/36596809

Featured Creature: Northern Cardinal

What instantly recognizable songbird holds seven state titles and has the crown to prove it?

The Northern Cardinal!

Image by Jack Bulmer on Pixabay

The iconic red plumage of the Northern Cardinal is a staple of backyard gardens across the Eastern United States and Mexico, and is a rare example of a species thriving amidst the expansion of the built environment. While Cardinalis cardinalis is a marker of springtime in New England, these non-migratory birds make permanent homes in open woodlands, thickets, and backyards, their striking red feathers bringing a welcome burst of color to the white backdrop of northern winters. 

When March rolls around, starting the cardinal breeding season, you’ll begin to hear the mating calls of female birds. Some of the most vocal songbirds around, the Northern Cardinal has a wide variety of chirps, whistles, calls, and songs – even duets unique to mated pairs –  that serve a range of purposes. Their vocal acrobatics and flashy appearance have made them a favorite among birders and state governments alike. The Northern Cardinal is the state bird of Illinois, Indiana, Kentucky, North Carolina, Ohio, Virginia, and West Virginia – the nation’s most popular choice with 7 state titles.

Hard to miss

Cardinals were originally named for the male bird’s resemblance to the bright red robes and caps of the cardinals of the Roman Catholic Church. In 1983, the “Northern” qualifier was added to differentiate the bird from its Southern cousins, including species like the Yellow Cardinal. Male Northern Cardinals possess those iconic red feathers, while the female is less flamboyant: brown in color with a reddish tint that is most noticeable while in flight. The male’s vibrancy may be useful to attract a mate, but the more neutral brown of the female helps to camouflage the nest during the incubation of eggs and subsequent brooding of chicks. This results in a natural division of parenting duties.

Image by Arron Doucett on Unsplash

An eventful mating season

Mating calls announce the start of nesting season in early March, and the cardinals’ prolific musical repertoire can be heard through late August or September. Northern cardinals select one mate for the extent of the breeding season and divide up the parenting responsibilities. With the red of the males easily spotted by predators, only the females sit on the nest. The males are resigned to foraging, allowed back to the nest only when a chirp from the female signals the coast is clear. 

Cardinal chicks feed primarily on nutrient-rich insects until they leave the nest 10 days after hatching. After the chicks fledge, or grow their flight feathers, the parents continue to feed the young birds for another month or more, transitioning them to a granivorous diet consisting of seeds and grain – easily shelled by their conical, orange beaks – with the occasional berry or insect. Around June, the cardinal parents are free to start their next brood. Northern cardinals often raise two rounds of chicks, ranging from 1-3 eggs per nest for a total of 3-5 eggs per season. Territories are fiercely defended by males, who are often seen attacking their own reflection in windows and mirrors. You can’t be too careful!

When the mating season winds down in late summer, it is not uncommon to spot the occasional bald cardinal, but don’t worry, the birds aren’t sick! Cardinals usually replace their crest feathers gradually throughout the summer, but sometimes they’re all molted at once, exposing their dark skin. The effect is only temporary, with their notable crest growing back in a matter of weeks.

Image by Ryan Pagois (Eagan, MN)

A well-adapted species

While most species around the world are confronting immense challenges and population declines as a result of urbanization and global warming, the range and population of Northern Cardinals is actually increasing. The growth of suburbs has increased their nesting habitat, as the birds favor the thick branches of bushes and shrubs, common in woodland edges and backyard gardens. Their expansion has been aided by the presence of birdfeeders, providing cardinals with an easy food source in urban areas that give them an advantage over most native bird species. (Sunflower seeds are a cardinal’s preferred snack, for anyone looking to attract these beautiful birds.)

Cardinals may be more protected in urban areas with an absence of larger predators, but they still play a role in their local ecosystems. They serve as seed-dispersers as they forage for food, and can become a meal for the occasional predator. Domestic cats and dogs do pose a threat to them, as do hawks and owls, while small snakes, squirrels, chipmunks, and blue jays tend to go after cardinal eggs. However, cardinals have proved exceptionally adaptable in the age of human expansion. Their range has crept northward to Maine and southern Canada in the past 100 years as temperatures increase, with Northern Cardinals now numbering around 130 million. 

While not a species of concern, may we continue to pay attention to and take inspiration from the Northern Cardinal, a proven adapter to the Anthropocene and a gentle backyard reminder of the beautiful sights and sounds of the natural world.

With a spring in my step,
Ryan


Ryan Pagois is a climate advocate and systems thinker serving as an Associate Director at Built Environment Plus, helping to drive sustainable building solutions in MA. He is passionate about urban ecology, carbon balance, and rewilding cities. He is excited to pursue a Masters of Ecological Design at the Conway School starting this fall, to explore how low-impact urban development can be our greatest climate solution and community resilience tool. He grew up in Minnesota and studied environmental policy and international relations at Boston University.


Sources and Further Reading:
https://www.allaboutbirds.org/guide/Northern_Cardinal/lifehistory#conservation
https://www.audubon.org/field-guide/bird/northern-cardinal
https://www.birdsandblooms.com/birding/state-birds-facts/
http://www.biokids.umich.edu/critters/Cardinalis_cardinalis/
https://www.audubon.org/news/10-fun-facts-about-northern-cardinal

Featured Creature: Pigeon

What often-overlooked creature is an expert navigator, an impressive postman, and a natural mammographer?

A pigeon!

Image by Burtamus on Pixabay

While the term “pigeon” actually refers to over 300 species of bird of the family Columbidae, the animal is generally characterized by its plump body, head-bobbing strut, and gentle disposition. That, and the fact that they seem to be everywhere. Pigeons have adapted to the majority of habitats on earth, with the most impressive being the urban environment. 

Rock pigeons, also known as city pigeons or common pigeons, were first introduced to North America in the 1600s, from Europe. Since then, they have come to inhabit nearly every city across the Americas.

Historical records in Mesopotamia and ancient Egypt suggest that pigeons were first domesticated around 5,000 years ago, making it nearly impossible to discern their original, wild range. Today, wild pigeons make homes of rocky cliffs or in caves, while their feral cousins nest on building ledges. 

With some of the most powerful flight muscles in the animal kingdom, pigeons are impressive fliers with the ability to take off almost vertically and avoid any in-flight obstacle. This enables them to dwell in even the busiest urban environments.

Image by Chait Goli on Pexels

Lovebirds!

Pigeons are monogamous, mating for life, and typically raise 1 to 2 chicks at a time. Their mating season is May through August in the Northern hemisphere, and co-parenting is key to the nestlings’ success. Dad usually takes the day shift while Mom takes the night watch, alternating incubation duties so the other can hunt for food or hit the McDonald’s drive thru. 

In the first four or five days after hatching, the chicks are fed “pigeon milk,” a unique secretion of a portion of the parents’ digestive system called the “crop.” This milky liquid is rich in nutrients and closely resembles that of mammals’ milk. Crop milk production is a hormonal response that begins a few days before the eggs hatch. When the chicks are around 10 days old, the milk-producing cells return to their normal dormancy and hatchlings can ease into a normal pigeon diet. (This process isn’t unique to pigeons; flamingoes and some species of penguin also produce a milk-like substance for their hatchlings.) Four to six weeks later, pigeon chicks are semi-independent, freeing the mated pair to start another brood. A couple of common pigeons can raise up to 12 chicks (six pairs of eggs) in a single mating season. 

Image by Hkyu Wu on Unsplash

Both Beauty and Brains

Due to both natural selection and human breeding, there are now over 300 species of pigeon cooing across the globe. They are all descendents of the humble rock pigeon.

Charles Darwin, a pigeon breeder, marveled at the beauty of evolution at work in the range of appearance and genetic expression in pigeons, calling it an analogy of what happens in nature. Many species of wild pigeon have developed flamboyant colors and crests that rival that of anyone’s favorite bird. Check out the photos below for some beautiful displays!

Crested Pigeon (Image by schneeknirschen on Pixabay)
Pigeon in Budapest (Image by Charles on Pixabay)
Doves are biologically identical to common pigeons 
(Image by StockSnap on Pixabay)

Pigeons are more than just looks, though. They’ve managed to take on a variety of human tasks with ease, often outperforming their human and technological counterparts. Pigeons have been carrying mail for centuries, back to ancient Roman times, and can deliver mail at speeds of up to 90 miles per hour (their average flight speed being 50-60 mph). They were even employed as military spies, with 95% of pigeons completing their missions and returning photographs of enemy operations to their side in WWI. The key to their impressive performance is their ability to tap into earth’s magnetic field.

They can also read the position of the sun, and have a keen sense of sight and smell. Their acute eyesight also makes them, unexpectedly, great mammographers. Pigeons can diagnose breast cancer in human patients with an accuracy on par with human radiologists reviewing the same cases.

So maybe the next time you hear someone refer to pigeons as “sky rats,” take a moment to share about some of the brilliance behind those red eyes.

Humbly,
Ryan


Ryan Pagois is a climate advocate and systems thinker serving as an Associate Director at Built Environment Plus, helping to drive sustainable building solutions in MA. He is passionate about urban ecology, carbon balance, and rewilding cities. He is excited to pursue a Masters of Ecological Design at the Conway School starting this fall, to explore how low-impact urban development can be our greatest climate solution and community resilience tool. He grew up in Minnesota and studied environmental policy and international relations at Boston University.


Sources and Further Reading:
https://www.britannica.com/animal/pigeon
https://www.allaboutbirds.org/guide/Rock_Pigeon/overview#
https://www.nationalgeographic.com/animals/article/pigeons-diversity-doves-photographs
https://www.ovocontrol.com/pigeon-facts-figures
https://www.ovocontrol.com/news-blog/2018/01/how-fast-do-pigeons-reproduce
https://www.spymuseum.org/exhibition-experiences/about-the-collection/collection-highlights/pigeon-camera/
https://www.northumberlandnationalpark.org.uk/pigeon-perfect/
https://www.universityofcalifornia.edu/news/pigeons-can-distinguish-cancerous-breast-tissue-normal
https://www.audubon.org/field-guide/bird/rock-pigeon
https://www.audubon.org/news/pigeon-milk-nutritious-treat-chicks
https://www.nytimes.com/2013/02/05/science/pigeons-a-darwin-favorite-carry-new-clues-to-evolution.html

Featured Creature: Atlantic Puffin

What striking seabird is a master of adaptability in the ocean and the air? 

The Atlantic Puffin!

Image by Anne-Ed C. from Pixabay

Nestled around the edges of the North Atlantic, the Atlantic Puffin, or Fratercula arctica, is a seabird of great charm and adaptability. Resembling a penguin in its coloration, yet distinguished by its multicolored and uniquely shaped bill, this captivating creature is often affectionately dubbed the “sea parrot.” 

Atlantic puffins have also been known as “sea clowns” because of that funky flattened bill, but make no mistake – these are some seriously impressive seabirds. With sophisticated burrows, skillful hunting, and dedication to raising families with determined care, these bright birds are marvels of the ocean.

Image by Mario from Pixabay

Aquatic Aviators

Atlantic puffins spend the majority of their lives navigating the vast expanse of the North Atlantic, where they are found on islands and coastal shores from North America to Scandinavia. With wings that double as paddles, they can “fly” through the water, propelled by powerful flippers and webbed feet.

These adept swimmers dive to impressive depths of up to 200 feet, hunting small fish like sand eels and herring with remarkable precision. In addition to their aquatic prowess, puffins can also fly, though they are unable to soar like other broad winged seabirds. Instead, using wings that can flap up to 400 times per minute, Atlantic puffins are able to reach speeds of up to 55 miles per hour (88.5 km/h).

Image by Decokon from Pixabay

Family Life

During the breeding season, thousands of puffins gather in colonies along the coasts and islands of the North Atlantic. These colonies provide safety in numbers, shielding the birds from larger predators like skuas and gulls that patrol the skies above. The breeding season sees puffins at their most colorful, with those distinctive bills featuring their blue-gray triangles accented in bright yellow. When the season is over, the bills’ outermost layers actually molt, and revert to a partly gray and partly orange color combination. 

Puffins exhibit strong pair bonds, often forming lifelong partnerships with their mates. They engage in affectionate behaviors such as rubbing and tapping beaks, reinforcing their bond year after year. Remarkably, these avian couples frequently return to the same burrow to raise their young each season.

Using their beaks and claws, they construct deep burrows that nestle between rocky crags and crevices. These generally feature separate tunnels that are used as a bathroom area, and a main nesting chamber that serves as a safe haven for incubating eggs, which hatch after a period of 42 days. 

Pufflings, as these chicks are called, are adorned with fluffy feathers that will eventually facilitate their ability to swim and fly. Both parents play an active role in incubating the egg and caring for their offspring once it has hatched, fetching food for the young puffling with skill and dedication. They make use of a unique adaptation of small spines along their bills, tongues, and the roofs of their mouths that allow them to hold bunches of fish in place as they fly from their hunts on open waters back to the nests where their young ones wait. It is estimated that during the time a puffling stays in its burrow dependent on this care, its parents will make close to 12,400 dives total to keep up the steady supply of food.

Image by Simon Marlow from Pixabay

Persevering Under Threat

Despite their remarkable adaptability, Atlantic puffins face a number of challenges in the modern world. From habitat loss and predation to climate change and human disturbances, these beloved seabirds are confronted with an uncertain future, and they are currently classified as Vulnerable by the IUCN (International Union for Conservation of Nature). In particular, as ocean temperatures rise and fish populations decline or shift their habitat, puffins struggle to find food with enough frequency and reliability to get by. Conservation and restoration measures can help ease these pressures by preventing overfishing, ensuring abundant marine ecosystems, and allowing all forms of ocean life, from underwater critters to seabirds, to survive and adapt. While the intersecting challenges of a warming and increasingly chaotic planet may be complex, modifying human behaviors has made a tremendous difference for these colorful creatures before. 

Take a look at the story of their bounce back from near extinction in the 20th century:

May we take hope in our power to shape our planet’s future for the better, and show the same love and dedication to these sweet seabirds as they do to their young pufflings. 

Flapping away now,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources and Further Reading:
https://www.allaboutbirds.org/guide/Atlantic_Puffin/overview#
https://www.nationalgeographic.com/animals/birds/facts/atlantic-puffin
https://kids.nationalgeographic.com/animals/birds/facts/atlantic-puffin
https://www.audubon.org/field-guide/bird/atlantic-puffin
https://abcbirds.org/bird/atlantic-puffin/
https://www.science.org/content/article/watch-puffin-use-tool-scratch-itch
Recent changes in the diet and survival of Atlantic puffin chicks in the face of climate change and commercial fishing in midcoast Maine, USA. Stephen W. Kress, Paula Shannon, Christopher O’Neal. FACETS 21 April 2016. https://doi.org/10.1139/facets-2015-0009

Featured Creature: Flamingo

What long-legged creatures are known for their beauty, social habits, and fabulous flamboyance?

Flamingos!

Image by Alexa from Pixabay

Flamingos are among the most recognizable birds in the world. These long-legged wading birds are known for their vibrant pink plumage and distinctive S-shaped necks, and rank among the most iconic inhabitants of wetlands across the globe. 

They are known to congregate in large flocks, standing (often perched on one leg) in the shallows of their habitat. Given their unmistakably flashy appearance, it is apt that a group of flamingos is known as a “flamboyance.”

Image by Gunnar Mallon from Pixabay

Flamingos boast a slender body, stilt-like legs, and a characteristic downward-bending bill, making them instantly recognizable. Though they are most often depicted as a bright pink, their plumage ranges from a subtle pink to crimson. This hue is actually derived from carotenoid pigments found in their diet of algae, crustaceans, and small invertebrates. So as flamingos’ range and available food sources vary, so too might their color. Interestingly, this same pigment responsible for the flamingo’s iconic pink is also what makes carrots orange and ripened tomatoes red. 

Flamingos thrive in saline or alkaline lakes, mudflats, and shallow lagoons, where they feed on algae, invertebrates, larvae, small seeds, and crustaceans like brine shrimp. Their long legs enable them to wade into deeper waters, utilizing their uniquely adapted bills to filter food from the mud and water. In fact, though the term usually calls to mind creatures like oysters or whales, flamingos are also considered “filter feeders” in their behavior and diet.

Image by Paul from Pixabay 

While most flamingo species are not endangered, habitat loss and human activities pose significant threats to their populations. Conservation initiatives, such as the establishment of protected reserves and the monitoring of wild populations, are crucial for safeguarding these charismatic birds and their habitats. As indicators of environmental health and key feeders in the wetlands, flamingos play a vital role in maintaining the delicate balance of their ecosystems. 

Lifestyle and relationships

Flamingos are highly social creatures, forming large flocks that can number in the thousands. They engage in intricate mating displays and rituals, characterized by synchronized movements and vocalizations. Once a couple has chosen to mate, breeding pairs construct simple mud nests, where they raise their offspring, feeding them a specialized “crop milk” produced in their upper digestive tract.

With a lifespan of 20 to 30 years in the wild, and up to 50 years in captivity, flamingos exhibit remarkable longevity. They typically lay a single chalky-white egg, which both parents incubate and care for until hatching. Young flamingos, born with gray downy feathers, gradually develop their iconic pink plumage over time.

Image by Pfüderi from Pixabay

Over time, these bright birds form strong social bonds that characterize their lives and behaviors. Remarkably, it has been observed that some flamingos will make friends for decades. Researchers have speculated that the bonds, which are influenced by factors such as personality traits and physical characteristics, may aid survival.

This long lasting affinity has led to comparisons and speculations about different forms of love in the animal kingdom. Though we see lots of courtship, pairing, and even mating for life in different species, friendship is one of those underrated forms of love well worth celebrating. And while these social relationships may indeed help with survival, it also might just be true that life is better with friends by your side.  

Feeling the love,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources and Further Reading:
https://animals.sandiegozoo.org/animals/flamingo
https://kids.nationalgeographic.com/animals/birds/facts/flamingo
https://nationalzoo.si.edu/animals/american-flamingo
https://www.audubon.org/birds-of-america/american-flamingo
https://www.nationalgeographic.com/animals/article/flamingos-make-friends-for-life
https://nationalzoo.si.edu/animals/news/why-are-flamingos-pink-and-other-flamingo-facts

Featured Creature: Crow

Carrion crow (Corvus corone) black bird portrait of head and looking at camera. Wildlife in nature. Netherlands

What common bird possesses an uncommon intelligence, including diversified communication, excellent memory, and a talent for mathematics? 

The crow!

Image by Kev from Pixabay

Crows, members of the Corvus genus, stand out as some of the most intelligent and adaptable birds on the planet. These corvids include over 40 species, such as the American crow, hooded crow, and fish crow, and they inhabit diverse habitats ranging from dense forests to urban landscapes. 

Known for their resourcefulness and problem-solving skills, crows have captivated scientists and observers alike with their remarkable behaviors. Crows continue to push the boundaries of how we understand animal intelligence, with recent studies on their tool use, awareness, and relationship to complex concepts gaining them well-deserved recognition and a place in the conservation conversation. 

Image by Wolfgang Heubeck from Pixabay

Crows are a fairly common sight in many parts of the world, with recognizable shiny black feathers and a familiar ‘caw.’ They are ground foragers with an incredibly diverse diet, ranging from insects and fruits to small animals and human food scraps. They tend to be associated with scavenging but are true omnivores, and can benefit soils and ecosystems by helping keep insect populations from surging out of balance. In urban settings, they are involved in flock feeding on human food scraps and garbage, and this adaptability to human environments means certain (though not all) species of crow maintain strong population numbers in the face of decreased access to natural habitat.

Communication and Complexity

While the crow ‘caw’ may seem like a simple call recognizable to many people, crow vocalization turns out to be quite differentiated. It has been discovered that among crows, groups form ‘dialects’ based on region. They also possess remarkable vocal mimicry skills, allowing them to imitate the sounds of other birds, animals, and even human speech. All of this allows the crow to engage in communication, social bonding, and strategic goals of deception and resource acquisition.

These crafty corvids possess a level of intelligence comparable to great apes and human children, allowing them to solve complex problems and even make and use tools. For instance, the New Caledonian crow, widely regarded as the most intelligent species among the corvid family, creates hooks and skewers from twigs to extract insects from crevices, showcasing their ingenuity. Researchers have studied crows’ usage of tools and observed that these birds will not only use pre-made tools or create simple combinations of tools in pursuit of their goal, but create multi-part composite tools, a behavior observed in only a few primates. 

Famously, Aesop’s fables summarized long ago, “A thirsty crow wanted water from a pitcher, so he filled it with pebbles to raise the water level to drink.” Though the story is thousands of years old, these behaviors are still being studied and producing new insight today.

Some of the most fascinating recent inquiries into crow intelligence have probed crows’ sense of self-awareness, long-term gratification, playfulness, and their understanding of complex concepts. As a math lover, one of my favorites among these is a unique phenomenon – conceptualization of ‘zero’. While many animals are able to perform basic counting, zero is generally a trickier beast, one that was absent from many ancient human civilizations’ numerical systems. However, crows are among the very few animals that grasp this number

Additionally, crows exhibit impressive memory skills and can recognize individual human faces, reacting differently to perceived threats than to harmless humans. They are even known for ‘holding grudges,’ or conversely, remembering favorable relationships with people for years at a time. The ability to remember and share information within families and flocks may provide them with a significant evolutionary advantage in protecting themselves from harm.

Birds of a Feather Flock Together

In addition to their intelligence and adaptability, crows exhibit fascinating social behaviors. They often engage in cooperative mobbing to fend off predators, perform elaborate aerial displays to attract mates, and maintain strong family bonds by living in cooperative family groups. While adult crows primarily socialize just with their monogamous mate (with whom they pair for life), young crows stay with their parents for the first two years of life, and juvenile crows live in highly social ‘juvenile gangs.’ One theory into crow intelligence suggests that their ingenuity is due to the relatively long period of time young crows spend with their parents and the learning this enables.

Some crows, like American Crows, are also known to flock in large groups in winter months, both foraging for food and roosting together. These roosts can range from a few hundred to up to two million crows, with some roosts forming in the same general area for well over 100 years. Moreover, crows hold “funerals” for deceased members of their community, demonstrating a level of social complexity often overlooked among animals. 

Crows will even form bonds with other animals. Crows in the wild have been observed playing with young wolves, and forming mutual attachments with these other social and intelligent creatures. Of course, there are many stories of the relationships humans have forged with individual crows, forming patterns of exchanging food for gifts or receiving trinkets after showing an injured bird care. One charming crow, Tuck, who has spent his life in a bird sanctuary in Tennessee, shares a moving friendship with his primary human caretaker, and has even become a conservation ambassador:

While many human cultures have depicted crows with respect for their ingenuity, recent trends have given crows a bad rap, primarily for the disturbance they cause to crops (hence the need for ‘scarecrows’). Despite their reputation as pests, though, crows play a crucial role in ecosystems as efficient garden helpers and natural pest controllers. They feast on insect pests like caterpillars and beetles, disperse seeds, and maintain a healthy balance in the garden ecosystem. Some crow species face significant challenges to their survival, such as habitat loss, disease, and predation, and crucial conservation efforts are underway to protect endangered species like the Hawaiian Crow through habitat restoration and captive breeding programs.

Crows have been both feared and revered by humans throughout history, often associated with death, darkness, and supernatural powers. The term “murder of crows” reflects their association with death and darkness in folklore, although alternative names like “horde” or “parliament” better capture their intelligent and social nature without perpetuating negative connotations. And many cultures and people have great respect for the clever crow, with whom we have coexisted for thousands of years. Despite their complex relationship with humans, crows continue to fascinate and inspire awe, challenging our limiting notions of animal behavior. 

For a deeper dive into crows and the insights they share on animal intelligence, check out this fascinating video and the sources below:

May we continue to learn from our animal kin,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources and Further Reading:
https://www.iflscience.com/crows-once-again-prove-their-intelligence-by-showing-that-they-understand-zero-60069
https://bigthink.com/neuropsych/crows-higher-intelligence/
https://arstechnica.com/science/2023/12/what-happens-in-a-crows-brain-when-it-uses-tools/
https://www.allaboutbirds.org/guide/American_Crow/overview
https://www.trvst.world/biodiversity/crow-facts/
https://www.audubon.org/news/10-fun-facts-about-american-crow
https://www.audubon.org/news/a-funeral-crows
https://www.npr.org/2020/10/23/927088859/crows-are-they-scary-or-just-super-smart

Featured Creature: Black Drongo

What small but fearless songbird can astonish with its aerial acrobatics and is always ready to battle much bigger birds for dominance?

The Black Drongo!

A songbird with fearless attitude, the black drongo, or Dicrurus macrocercus, can be found across Southeast Asia. I first encountered this amazing avian when visiting India, where drongos could be seen across the treetops of Delhi and Kolkata. Their variety of calls and distinctive two-pronged tail caught my attention, and the more I learned about these creatures, the more I came to respect their cleverness and adaptability. 

Some consider drongos to be a symbol of good fortune. This may be related to their ecological role controlling the population of certain insects that can prove to be major pests in agricultural areas. Whether due to their beauty, their singing talents, or contributions to ecological balance, black drongos’ deserve our respect and high regard.

Photo by Vinoth Chandar (CC BY 2.0, via Wikimedia Commons)

Strength in numbers

One of the most amazing characteristics of these songbirds is their brazen behavior. Though they have an average size of about 11 inches (or 28 cm), black drongos don’t shy away from conflict with much bigger neighbors. 

During nesting season, when birds of prey pose a threat to drongos’ nests, drongos have been known to band together and fight back. They employ the technique of ‘mobbing’ the predators, gathering in numbers to harass the threat and drive it out of the area. In certain cases, drongos have taken to this behavior year-round, preemptively “cleaning up the neighborhood” before bigger birds have a chance to locate and disrupt their nests. 

Naturally, other small birds have come to appreciate this service, and species like bulbuls, orioles, doves, and pigeons tend to nest near drongos to enjoy their protection. One beautiful display of mutualism has been recorded in which a red-vented bulbul fed the chicks of a black drongo. Talk about community building!

As drongos’ forked tails may suggest, these birds are built to be incredibly aerodynamic. They often dart through the air in pursuit of their insect prey, and have been observed on daring escapades through fiery skies, as farmers using seasonal burns on their agricultural fields cause insects in those habitats to flee. The drongos happily browse the feast in these dramatic events, and in general they’re not too picky about how they get their meal. 

Black drongos will fly near tree branches to disturb insects and pick them off, or forage for grubs and caterpillars on the ground. They’ll eat cicadas, grasshoppers, ants, wasps, beetles, dragonflies, and more insects, and will even occasionally consume bigger prey like small birds, reptiles, bats, and fish. Living along forest edges, farmland, meadows, wetlands, and fields, black drongos benefit by having a wide diet that can suit their circumstances.

Photo by Maya Dutta

Clever callers

In addition to their flying skills, drongos use their vocal talents to rustle up a good meal. These birds are far from one-note. They have tremendous range in the calls they produce, and have become quite adept in the art of mimicry. Drongos sometimes sound alarms, causing other creatures to flee and abandon their food, leaving it up for grabs.  

Fork-tailed drongos (the black drongo’s African cousins) have been observed tricking meerkats in this way, and you can watch their wily ways on BBC Earth:

Black drongos of Asia do the same, imitating the call of the shikra (a small raptor) to scare myna birds away from their meals, and swooping in to enjoy the spoils. Perhaps they aren’t the best neighbors after all… 

Drongos’ variety of calls shows just how complex their communication can be. In order to mate, nest, forage, feed, mob, and play, the drongo requires a wide vocabulary, and while its most common sound is a two note ‘tee-hee’, drongos are capable of many more songs and sounds to express themselves. Listen in here:

Drongos demonstrate how using your voice and your talents cleverly can help you adapt to any number of circumstances. On that note, I’ll fly off now!

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources:
https://www.tribuneindia.com/news/schools/drongo-the-kotwal-among-birds-190571
https://jlrexplore.com/explore/focus/drongos-of-karnataka
https://en.wikipedia.org/wiki/Black_drongo
https://ebird.org/species/bladro1