Featured Creature: Camel

A dromedary camel photographed in Varamin, Iran
Image credit: Houman Doroudi via iNaturalist (CC-BY-NC)

What animal is the “Superhero of the Desert,” reshaping entire ecosystems simply by eating, roaming, and . . . pooping?

Meet the Desert Superhero! 

A dromedary camel photographed in Varamin, Iran
Image credit: Houman Doroudi via iNaturalist (CC-BY-NC)

Desert wanderer
Curved as the dunes he walks on
Splat! Anger expressed

A close family friend asked me to cover camels as one of my Featured Creatures. Ask, and ye shall receive! Despite the majority of camels today being domesticated species, they still play important roles in their local ecosystem, and contribute to the biodiversity of the habitats in which they live.

Dominating the Desert, and De-bunking Assumptions

Camels are far more than the four-legged, desert pack animals typically shown in movies—their presence shapes the health, stability, and biodiversity of their ecosystems. Their grazing patterns, movement, digestion, and remarkable resilience collectively engineer the landscapes they inhabit.

Camels haven’t just adapted to desert life, their entire bodies are designed for endurance in some of the most unforgiving climates on Earth. Did you know they can go up to 10 days without drinking, even in extreme heat! Their long legs help keep them cool, elevating their bodies away from ground temperatures that can reach 158ºF (70°C), and their thick coat insulates them against radiant heat. In the summer, their coats lighten to reflect the sunlight.

Long eyelashes, ear hairs, and sealable nostrils protect against the blowing sand, while their wide, padded feet keep them from sinking into the desert sand or snow. Bactrian camels grow heavy winter coats that enable survival in winter temperatures (-20ºF [-29ºC]), then shed them to adapt to the hot summer temperatures. Their mouths have a thick, leathery lining that allows them to chew thorny, salty vegetation, with split, mobile upper lips that help them grasp sparse grasses . . . and spit. Well, sorta. . .  

Desert Engineers and Seed Dispersers

These “ships of the desert” feed on thorny, salty, dry plants that most herbivores avoid, keeping dominant species in check and promoting plant diversity. Their nomadic lifestyle prevents overgrazing, spreading this balancing effect across vast ranges and reducing the risk of desertification. As they move, they disperse seeds in their dung, enriching poor soils with nutrients and enabling new vegetation to take hold where it otherwise could not. 

Even their hydration strategy—relying heavily on moisture from plants and drinking only occasionally—protects scarce water sources that smaller species depend on. Trails they create become pathways for other wildlife, while their presence attracts predators and scavengers, helping sustain food webs in seemingly barren terrain.

People often assume that camels carry water in their humps and spit when they are annoyed. But those humps aren’t sloshing with water. They are fat-storage structures that provide a slow-burning energy reserve when food is scarce. And that spitting? It’s actually a warning system composed of both saliva and partially digested stomach contents. 

Helping People and Ecosystems Endure

Even though they may look goofy at first, the ecological and cultural value of the camel is extraordinary. 

They have supported human survival in harsh environments for thousands of years. Domesticated camels provide wool, meat, milk, transportation, and labor. Their endurance and strength have made them central to trade routes, cultural traditions, and economic activity across regions where few other animals could thrive.

Camels shape vegetation patterns, support biodiversity, stabilize fragile ecosystems, and enable life in regions that would otherwise be nearly uninhabitable. Without camels, many desert landscapes would lose the very processes that sustain them.

So next time you see a camel, in a movie, at a zoo, or on your travels, remember that these are no ordinary creatures. They are survival specialists and a cornerstone of some of the world’s harshest and most remarkable environments.

The wild bactrian camel (of which there are only 950 remaining)
photographed in Mongolia’s Gobi Desert.
Image credit: Chris Scharf, a client of Royle Safaris via iNaturalist (CC-BY-NC)

Sienna Weinstein is a wildlife photographer, zoologist, and lifelong advocate for the conservation of wildlife across the globe. She earned her B.S. in Zoology from the University of Vermont, followed by a M.S. degree in Environmental Studies with a concentration in Conservation Biology from Antioch University New England. While earning her Bachelor’s degree, Sienna participated in a study abroad program in South Africa and Eswatini (formerly Swaziland), taking part in fieldwork involving species abundance and diversity in the southern African ecosystem. She is also an official member of the Upsilon Tau chapter of the Beta Beta Beta National Biological Honor Society.

Deciding at the end of her academic career that she wanted to grow her natural creativity and hobby of photography into something more, Sienna dedicated herself to the field of wildlife conservation communication as a means to promote the conservation of wildlife. Her photography has been credited by organizations including The Nature Conservancy, Zoo New England, and the Smithsonian’s National Zoo and Conservation Biology Institute. She was also an invited reviewer of an elephant ethology lesson plan for Picture Perfect STEM Lessons (May 2017) by NSTA Press. Along with writing for Bio4Climate, she is also a volunteer writer for the New England Primate Conservancy. In her free time, she enjoys playing video games, watching wildlife documentaries, photographing nature and wildlife, and posting her work on her LinkedIn profile. She hopes to create a more professional portfolio in the near future.


Dig Deeper

https://animals.sandiegozoo.org/animals/camel

https://arkbiodiv.com/2022/05/18/the-camels-play-important-role-in-ecosystem-management-important-actor-of-the-desert/

https://dairynews.today/global/news/odnogorbyy1-verblyud-klyuchevoy-vid-dlya-vozrozhdeniya-pustyni-i-ustoychivogo-razvitiya.html

https://en.wikipedia.org/wiki/Camel

https://en.wikipedia.org/wiki/Wild_Bactrian_camel

https://kimd.org/the-role-of-camels-in-desert-ecosystems/

https://www.worldatlas.com/articles/how-many-types-of-camels-live-in-the-world-today.html

https://www.worldwildlife.org/stories/what-do-camels-store-in-their-humps-and-other-camel-superpowers

https://www.zsl.org/news-and-events/news/wild-bactrian-camel-research

Featured Creature: Macrotermes Termites

What is the second most consumed insect group in the world (by humans) that can build nests with heights up to 9 meters (29.5 feet) and has a symbiotic relationship with fungi?

Macrotermes carbonarius (Image Credit: Soh Kam Yung via iNaturalist (CC-BY-NC))

As a featured creature writer for Bio4Climate, I try to read through as many of our published pieces as possible, even those that pre-date my tenure. It’s a tall order, there are so many! Hidden alongside the grand humpback whale, the impressionable Pando, and the beautiful luna moth, I found Fred Jennings’ piece on the zombie ant fungus: an unpleasant looking insect-pathogenic fungus that attaches to ants’ exoskeletons and takes over their bodies from the inside out. It was a little grotesque, a little unsettling, and completely and utterly fascinating. 

I’ve been wanting to write about a creature that doesn’t usually make the highlight reel…something easy to overlook, but essential in its own way. My hope is to inspire curiosity (and appreciation) for the parts of nature that don’t always fit our ideas of beauty.

More Than Just Pests

When I think of termites I think about how people, especially homeowners, consider them pests. One of the first links that pops up in an online search for the word termites is the U.S. Environmental Protection Agency’s guide for how to identify and control them. But just as it’s unfair to call sloths lazy simply because they move slowly, it’s unfair to define termites only by their “pest” status. They weren’t ever “pests” until we made them so. 

Macrotermes vitrialatus (Image Credit: Craig Peter via iNaturalist (CC-BY-NC))

Macrotermes are fungus-growing termites that reside in tropical regions of Africa and Asia. These insects are larger than other common termites, the largest of all 330 species being the Macrotermes bellicosus, with queens reaching over four inches in length! Most of these bugs are dark brown, with some exceptions like the Macrotermes carbonarius, which are entirely black, and the Macrotermes gilvus, which have orange/red-brown heads.

Termites are a valuable part of many ecosystems. Like fungi, bacteria, and detritivores like millipedes, they decompose dead plant material, modifying the physical and chemical distribution of the soil. Creatures like termites restore soil that’s been degraded and play a key role in cellulose recycling, breaking down plants, wood, and paper into smaller molecules other organisms can use, and returning nutrients to the ecosystem. But, these termites are pretty special for a reason other than their role as ecosystem engineers.

Teamwork Makes the Colony Work

Macrotermes thrive thanks to teamwork, and a symbiotic partnership with a fungus that shares their life cycle. It’s remarkable that these termites (just like other creature populations) cooperate so well in such large numbers. Macrotermes colonies have a highly organized social system in which each insect has a role that makes life efficient and successful: workers gather food and build and maintain the nest/mound, soldiers use their strong jaws to protect the colony from predators like ants, and the queen and king reproduce. This social complexity is mirrored by the colony’s architecture. 

Macrotermes carbonarius (Image Credit: Dirk Mezger via iNaturalist (CC-BY-NC))

Termite mounds aren’t just shelters, they’re marvels of natural engineering. Built with purpose, these architectural feats regulate temperature and humidity to create the ideal environment for the termite’s fungal partner, Termitomyces, to grow. After foraging for wood or dead plant material, Macrotermes workers masticate and deposit it in chambers inside their nest, producing the perfect substrate for fungus to grow into a comb. Macrotermes cultivate these fungus gardens and feed on them while the fungus degrades plant material, resulting in a continuous supply of food for the termites. To stimulate the right conditions for Termitomyces to grow, macrotermes build their nests with air ducts and ventilation systems. As the fungus produces heat in the nest, workers can open or block individual tunnels that lead to the surface to regulate temperature and humidity. These structures are built to various heights, with some only one foot tall while exceptional ones can rise more than 30 feet. 

Macrotermes and Humans

Macrotermes termites are an important edible insect widely consumed throughout Africa, along with their fungus gardens. People use the bugs, mushrooms, and termite soil in medicinal practices. The soil can be used as fertilizer or as building material to make bricks and plaster houses. These insects are also used as bait and feed for livestock. Alongside these uses, macrotermes termites have a role in superstitious beliefs, their nests serving as burying places associated with the spiritual world.

Outside their habitat in urban environments, most macrotermes are unable to survive, so they aren’t considered pests like other termites because they don’t cause as much damage to wood structures like homes and buildings. In contrast, macrotermes can pose threats to agriculture by directly consuming crops, roots, and stems of plants. But, like nearly every other creature in the natural world, these bugs don’t live without some challenges of their own.

The largest threat to termites is changes in land use; particularly transitions to organized orchards and more intensified agricultural practices. As ecosystem engineers that contribute directly to the nutrient makeup of the soil in their ecosystem, the changes in land use can have damaging effects on the landscape and organisms throughout the food cycle.

Macrotermes carbonarius (Image Credit: budak via iNaturalist (CC-BY-NC)) 

Nature deserves to be seen in its full complexity, not just through the lens of what we find beautiful, helpful, scary, or annoying. When we only celebrate the vibrant colors, graceful shapes, or soothing sounds, we risk overlooking the strange, the hidden, and the essential. 


Abigail Gipson is an environmental advocate with a bachelor’s degree in humanitarian studies from Fordham University. Working to protect the natural world and its inhabitants, Abigail is specifically interested in environmental protection, ecosystem-based adaptation, and the intersection of climate change with human rights and animal welfare. She loves autumn, reading, and gardening. 




Dig Deeper


Featured Creature: Strangler Fig

What creature grows backwards and can swallow a tree whole?

The strangler fig!

A strangler fig in Mossman Gorge, Queensland. (Image by author).

A Fig Grows in Manhattan

I recently wrapped a fig tree for the winter. Nestled in the back of a community garden, in the heart of New York City, I was one of many who flocked not for its fruit but for its barren limbs. An Italian cultivar, and therefore unfit to withstand east coast winters, this fig depends on a bundle of insulation to survive the season. The tree grows in Elizabeth Street Garden, a space that serves the community in innumerable ways, including as a source of ecological awareness.

Wrapping the fig was no small task. With frozen fingers we tied twigs together with twine, like bows on presents. Strangers held branches for one another to fasten, and together we contained the fig’s unwieldy body into clusters. Neighbors exchanged introductions and experienced volunteers advised the novice, including me. Though I’d spent countless hours in the garden, this was my first fig wrapping. My arms trembled as the tree resisted each bind. Guiding the branches together without snapping them was a delicate balance. But caring for our fig felt good and I like to think that after several springs in the sunlight it understood our efforts. Eventually, we wrapped each cluster with burlap, stuffed them with straw and tied them off again. In the end, the tree resembled a different creature entirely.

Growing Down

Two springs earlier, I was wrapped up with another fig. I was in Australia for a semester, studying at the University of Melbourne, and had traveled with friends to the northeast coast of Queensland to see the Great Barrier Reef. It was there that I fell in love with the oldest tropical rainforest in the world, the Daintree Rainforest. 

The fig I found there was monumental. Its roots spread across the forest floor like a junkyard of mangled metal beams that seemed to never end. They climbed and twisted their way around an older tree, reaching over the canopy where they encased it entirely.

The strangler fig begins its life at the top of the forest, often from a seed dropped by a bird into the notch of another tree. From there it absorbs an abundance of light inaccessible to the forest’s understory and sends its roots crawling down its support tree in search of fertile ground. Quickly then, the strangler fig grows, fueled by an unstoppable combination of sunlight, moisture, and nutrients from the soil. Sometimes, in this process, the fig consumes and strangles its support tree to death, hence its name. Other times, the fig can actually act as a brace or shield, protecting the support tree from storms and other damage. Even as they may overtake one tree, strangler figs also give new life to the forest.

As many as one million figs can come from a single tree. It is these figs that attract the animals who disperse both their seeds and the seeds of thousands of other plant species. With more than 750 species of Ficus feeding more than 1,200 distinct species of birds and mammals, the fig is a keystone resource of the tropical rainforest —the ecological community depends upon its presence and without it, the habitat’s biodiversity is at risk.

Fig-Wasp Pollination

Like the strangler fig, its pollination story is also one of sacrifice. Each fig species is uniquely pollinated by one, or in some cases a few, corresponding species of wasp. While figs are commonly thought of as fruit, they are technically capsules of many tiny flowers turned inward, also known as a syconium. This is where their pollination begins. The life of a female fig wasp essentially starts when she exits the fig from which she was born to reproduce inside of another. Each Ficus species depends upon one or two unique species of wasps, and she must find a fig of both the right species and perfect stage of development. Upon finding the perfect fig, the female wasp enters through a tiny hole at the top of the syconium, losing her wings and antennae in the process. She will not need them again, on a one way journey to lay her eggs and die. The male wasps make a similar sacrifice. The first to hatch, they are wingless, only intended to mate with the females and chew out an exit before dying. The females, loaded with eggs and pollen, emerge from the fig and continue the cycle.

The life cycle of the fig wasp.
(U.S. Forest Service, Illustration by Simon van Noort, Iziko Museum of Cape Town) 

The mutualistic relationship between the fig and its wasp is critical to its role as a keystone resource. As each wasp must reproduce additional fig species in the forest at different stages of development, there remains a constant supply of figs for the rainforest.

However, climate change threatens these wasps and their figs. Studies have shown that in higher temperatures, fig wasps live shorter lives which makes it more difficult for them to travel the long distances needed to reach the trees they pollinate. One study found that the suboptimal temperatures even shifted the competitive balance to favor non-pollinating wasps rather than the typically dominant pollinators. 

Another critical threat to figs across the globe is deforestation, in its destruction of habitat and exacerbation of climate change. In Australia, this threat looms large. Is it the only developed nation listed in a 2021 World Wildlife Fund study on deforestation hotspots, with Queensland as the epicenter of forest loss. Further, a study published earlier this year in Conservation Biology concluded that in failing to comply with environmental law, Australia has fallen short on international deforestation commitments. Fortunately, the strangler figs I fell in love with in the Daintree are protected as part of a UNESCO World Heritage Site in 1988 and Indigenous Protected Area in 2013.

Stewards of the Rainforest

The Daintree Rainforest has been home to the Eastern Kuku Yalanji people for more than 50,000 years. Aboriginal Australians with a deep cultural and spiritual connection to the land, the Eastern Kuku Yalanji have been fighting to reclaim their ancestral territory since European colonization in the 18th century. Only in 2021 did the Australian government formally return more than 160,000 hectares to the land’s original custodians. The Queensland government and the Eastern Kuku Yalanji now jointly manage the Daintree, Ngalba Bulal, Kalkajaka, and Hope Islands parks with the intention for the Eastern Kuku Yalanji to eventually be the sole stewards. 

Rooted in an understanding of the land as kin, the Eastern Kuku Yalanji people are collaborating with environmental charities like Rainforest Rescue and Climate Force to repair what’s been lost, reforesting hundreds of acres and creating a wildlife corridor between the Daintree Rainforest and the Great Barrier Reef. The corridor aims to regenerate a portion of the rainforest that was cleared in the 1950s for agriculture.

Upon returning to Cairns from the rainforest, we set sail and marveled at the Great Barrier Reef. My memories of the Daintree’s deep greens mingled with the underwater rainbow of the reef. At the Cairns Art Gallery the next day, a solo exhibition of artist Maharlina Gorospe-Lockie’s work, Once Was, visualized this amalgamation of colors in my mind. Gorospe-Lockie’s imagined tropical coastal landscapes draw from her work on coastal zone management in the Philippines and challenge viewers to consider the changes in our natural environment.

Maharlina Gorospe-Lockie, Everything Will Be Fine #1 2023
From the solo exhibition Once Was at the Cairns Art Gallery. (photo by author).

On the final day wrapping our fig in New York, I lean on a ladder above the canopy of our community garden and in the understory of the urban jungle. Visitors filter in and out, often stopping to ask what we’re up to. Some offer condolences for the garden and our beloved fig, at risk of eviction in February. We share stories of the burlap tree and look forward to the day we unwrap its branches.

The parallel lives of these figs cross paths only in my mind, and now yours. Perhaps also in the fig on your plate or the tree soon to be planted around the corner.


Jane Olsen is a writer committed to climate justice. Born and raised in New York City, she is driven to make cities more livable, green and just. She is also passionate about the power of storytelling to evoke change and build community. This fuels her love for writing, as does a desire to convey and inspire biophilia. Jane earned her BA in English with a Creative Writing concentration and a minor in Government and Legal Studies from Bowdoin College.


Sources and Further Reading:

Featured Creature: ‘Ōhi’a Lehua

What tree has adapted to grow directly in lava rock and is a keystone species of the Hawaiian watershed?

‘Ōhi’a Lehua (Metrosideros polymorpha)!

Image Credit: Kevin Faccenda via iNaturalist 

The first time I saw the vibrant blossoms of the ‘ōhi’a lehua tree, I was walking on a dirt path in Kauai’s Waimea Canyon State Park, gaping down at the most colorful red and green gorges I had ever seen. Needing a breather from the steep visual plunge, I looked up from the canyon and noticed bright red flowers on the side of the path. As I got closer and could see the plant more clearly, the first thought that popped into my head was how similar the flowers looked to those fiber optic light toys I had played with as a kid. (If you don’t know what fiber optic light toys look like, look them up. You’ll see exactly what I mean.) 

After my trip to Waimea Canyon, I saw ‘ōhi’a lehua everywhere. When I drove along the coast between the beach and the sloping mountains, when I hiked the volcanic craters of Haleakala, and when I visited parks and gardens across the islands that protect native plants and animals. ‘Ōhi’a lehua is the most common native tree in Hawaii, so seeing its fiery red, orange, or yellow blossoms every day felt so very ordinary. But ‘ōhi’a lehua is far from ordinary.

Let Me Introduce You to My New Friend, ‘Ōhia Lehua

Endemic to the six largest islands of Hawaii, ‘ōhi’a lehua is the dominant tree species in native forests, present in approximately 80% of the total area of these ecosystems and covering close to one million acres of land across the state. Depending on where exactly it grows, its size can vary widely, from a small shrub to a large tree. Found only in the Hawaiian archipelago, ‘ōhi’a lehua grows at elevations from sea level to higher than 9000 feet, and in a variety of habitats like shrublands, mesic forests (forests that receive a moderate amount of moisture throughout the year), and more wet, or hydric, forests.

You can easily identify the ‘ōhi’a lehua blossoms by their mass of stamens – the part of the flower that produces pollen – which are slender stalks with pollen-bearing anthers on the end. It’s what made me think the ‘ōhi’a lehua looked exactly like those fiber optic light toys. These powder puff-like flowers are most often brilliant shades of red and orange, but yellow, pink, and sometimes even white ones can be found.

‘Ōhi’a lehua grows slowly, reaching up to 20-25 meters (66-82 feet) in certain conditions.

With a little help from the wind, the seeds of ‘ōhi’a lehua travel from the tree and settle in cracks in the ground of young lava rock. It is, in every sense, a true pioneer plant. As one of the earliest plants to colonize and grow in fresh lava fields, ‘ōhi’a lehua stabilizes the soil and makes it more habitable for other species.

Even though ‘ōhi’a lehua can blanket Hawaii’s native forests, this flowering tree also grows alone, as you can see in the photograph below. Plants like ‘ōhi’a lehua fill me with happiness because they are able to grow in the most harsh, barren, and disrupted places, and they make it possible for other species to do the same. Plants like ‘ōhi’a lehua fill me with surety that even though sometimes poorly treated, the natural world will continue to be strong. Plants like ‘ōhi’a lehua make me believe in the resilience of nature.

Arid, rocky, Mediterranean coast. (Via Pexels)

How ‘Ōhi’a Lehua Cares for the Hawaiian People

Biodiversity forms the web of life we depend on for so many things – food, water, medicine, a stable climate, and more. But this connection between human beings and natural life is not always clear, understood, or appreciated. But there is a concept in Hawaiian culture called aloha ‘āina, or love of the land, which teaches that if you take care of the land, it will take care of you. The ‘ōhi’a lehua in particular takes care of the Hawaiian people in a pretty special way. 

One of the most important characteristics of this flowering evergreen tree is that it’s a keystone species, protecting the Hawaiian watershed and conserving a great amount of water. The way I see it, ‘Ōhi’a lehua is an essential glue that holds Hawaii’s native ecosystems together. The leaves of ‘ōhi’a lehua are excellent at catching fog, mist, and rain, replenishing the islands’ aquifers and providing drinking and irrigation water for Hawaiian communities. ‘Ōhi’a lehua’s ability to retain water, particularly after storms, not only makes that water accessible for other plants, but it helps mitigate erosion and flooding. The tree provides food and shelter for native insects, rare native tree snails (kāhuli), and native and endangered birds like the Hawaiian honeycreepers (‘i’iwi, ‘apapane, and ‘ākepa). ‘Ōhi’a lehua trunks protect native seedlings and act as nurse logs, providing new plants with nutrients and a growing environment.

‘I’iwi, the Scarlet Hawaiian Honeycreeper, perched on an ‘ohi’a tree (Image Credit: Nick Volpe)

The Myth of ‘Ōhi’a Lehua

‘Ōhi’a lehua may have a disproportionately large effect on Hawaii’s ecosystems as a keystone species, but its presence as a meaningful part of Hawaiian culture could be even larger. There are many versions of mo’olelo (story) about the origin of the ‘ōhi’a lehua tree, but the most common one is about young lovers named Ōhi’a and Lehua. Pele, the goddess of the volcano, changed herself into a human woman and tried to entice ‘Ōhi’a. When he denied her, Pele became enraged and transformed ‘Ōhi’a into a tree. When Lehua found out, she was so heartbroken that she prayed to the gods to somehow help her reunite with him. Answering her prayers, the gods transformed Lehua into a flower and placed her on the ‘ōhi’a tree’s limbs. To this day, it’s believed that whenever a lehua flower is picked, the skies will open up and rain will fall, because the lovers have been separated.

‘Ōhi’a Lehua as a Cultural Symbol

In Hawaiian culture, the ‘ōhi’a lehua is a symbol of love, resilience, and ecological harmony. The transformation of Ohia and Lehua into tree and flower represents the inseparable bond between two people who love each other, and between the tree and its flowers. The term pua lehua, or lehua flowers, is often used to describe people who express the same grace, strength, and resilience of the ‘ōhi’a lehua. Pilina, a Hawaiian word that means “connection” or “relationship,” is an important value in Hawaiian culture because it is a critical way for people to connect with and understand the world around them. The ‘ōhi’a lehua tree is a symbol of pilina, and embodies this relationship between the Hawaiian landscape and its people.

The ‘ōhi’a lehua is also incredibly important to hula. Hula is the narrative dance of the Hawaiian Islands, and it is an embodiment of one’s surroundings. Dancers use fluid and graceful movements to manifest what they see around them and tell stories about the plants, animals, elements, and stars. ‘Ōhi’a lehua trees and forests are considered sacred to both Pele, the goddess of the volcano as you may recall, and Laka, goddess of hula. To enhance their storytelling and evoke the gods, dancers traditionally wear lehua blossoms or buds in lei, headbands, and around their wrists and ankles.

The Dependability of ‘Ōhi’a Lehua 

‘Ōhi’a lehua has long been a part of daily life. Historically, the hardwood of the tree was used for kapa (cloth) beaters, papa ku’i ‘ai (poi pounding boards), dancing sticks and ki’i (statues), weapons, canoes, and in the construction of houses and temples. Today, the tree’s wood is used for flooring, furniture, fencing, decoration, carving, and firewood. ‘Ōhi’a lehua blossoms decorate altars for cultural ceremonies and practices. Flowers, buds, seeds, and leaves form the base of medicinal teas that can stimulate appetite and treat childbirth pain.

Threats to ‘Ōhi’a Lehua

As a native tree, ‘ōhi’a lehua competes with invasive species for moisture, nutrients, light, and space. Plants like the strawberry guava plant (Psidium cattleyanum) grow in dense thickets and block the growth of ‘ōhi’a seedlings. The invasive fountain grass (Pennisetum setaceum) can dominate barren lava flows, making it difficult for ‘ōhi’a to compete. ‘Ōhi’a lehua is also threatened by non-native animals. Hooved animals like pigs, cattle, goats, and deer disturb the soil, eat sensitive native plants, and trample the roots of ‘ōhi’a lehua trees.

The most dangerous threat to ‘ōhi’a lehua is a virulent fungus called Ceratocystis fimbriate, which attacks the tree’s sapwood, preventing it from uptaking water and nutrients, and killing the tree within weeks. It’s been given the name Rapid Ohia Death (ROD) because of how quickly it suffocates the tree, turning the leaves yellow and brown and the sapwood black with fungus. Infections spread through a wound in the bark, which can be caused by animals trampling roots, lawn mowing, or even pruning, and can be present in the tree for up to a year before showing symptoms. ROD is spread by an invasive species of wood boring Ambrosia beetle that infests the tree and feeds off the fungus. When colonizing trees, the beetle produces a sawdust-like substance made of excrement and wood particles called frass, which can contain living fungal spores that get carried in wind currents and spread by sticking to animals and human clothes, tools, and vehicles. 

Since its discovery in 2014, ROD has killed more than one million ‘ōhi’a lehua trees across 270,000 acres of land, making it a significant threat to biodiversity and cultural heritage. The International Union for Conservation of Nature (IUCN) classifies ‘ōhi’a lehua’s conservation status as vulnerable, and has recorded a decline in mature trees since 2020. Because ROD can spread long distances, it has the potential to wipe out ‘ōhi’a lehua across the entire state. If ‘ōhi’a lehua disappears, it will lead to a collapse of the Hawaiian watershed and radically change the ecosystem.

How the Hawaiian People Care for ‘Ōhi’a Lehua

Scientists, researchers, and native Hawaiians are working together to ensure the long-term health and resilience of ‘ōhi’a and Hawaii’s native forests by mitigating the spread of Rapid Ohia Death. Hawaii’s Forest Service monitors the land to track the spread of ROD and mortality of trees, has developed sanitation and wound-sealing treatments, and collaborates with hunters and game managers to reduce disease transmission. Scientists rigorously test ‘ōhi’a trees to understand the disease cycle, find out how it can be broken, and to identify trees resistant to the infection that could be used in potential reforestation efforts. 

To prevent the spread, Hawaii has announced quarantine restrictions, travel alerts, and sanitation rules. If you are shipping vehicles between islands, you should clean the entire understory with strong soap to remove all mud and dirt from the tires and wheel wells. People who go into ‘ōhi’a forests are advised to avoid breaking branches or moving wood around, to clean their shoes and clothes, and to decontaminate any tools used with alcohol or bleach to kill the fungus. Even hula practitioners are forgoing the use of ‘ōhi’a lehua.

Orange ‘ōhi’a lehua blossom (Image Credit: Joan Wasser via National Park Service)

Mālama the ‘āina

Mālama the ‘āina is a phrase that means to care for and honor the land. ‘Ōhi’a lehua is a wonderful representation of the interconnection between people and nature and I hope learning about this beautiful tree has encouraged you to appreciate the relationship we have with the Earth and what the natural world does for us. 

Remember, if you take care of the land, it will take care of you.

Abigail


Abigail Gipson is an environmental advocate with a bachelor’s degree in humanitarian studies from Fordham University. Working to protect the natural world and its inhabitants, Abigail is specifically interested in environmental protection, ecosystem-based adaptation, and the intersection of climate change with human rights and animal welfare. She loves autumn, reading, and gardening.


Sources and Further Reading:

Featured Creature: Aardvark

What unique animal could be a cross between a rabbit, a pig, an opossum, and an anteater?

The aardvark!

Photo by Kelly Abram from iNaturalist

Meet the aardvark – a one-of-a-kind mammal native only to sub-Saharan Africa.

The aardvark has an unusual hodge-podge mix of features including rabbit-like ears, a pig-like snout, an opossum-like tail, and a long, sticky anteater-like tongue. This creature has large and formidable claws used for digging and defense. Weighing in at 115 – 180 pounds, the aardvark is much heftier than it looks. 

Aardvarks inhabit the savannas, arid grasslands, and bushlands of sub-Saharan Africa where there is plenty of their favorite prey, ants and termites. They are solitary and do not socialize with others unless for mating or raising young. They live for about 18 years in the wild and approximately 25 years in captivity.

The aardvark is famous for being the first noun in the English dictionary. The animal goes by many names including Cape anteater and ant bear, but its colloquial moniker, aardvark, is Afrikaans for “earth pig”.

Photo by Louise Joubert from Wikimedia Commons

Odd Relatives

Although the aardvark is an eater of ants, it is not an anteater. Understandably, the comparison comes from its similar appearance and nearly identical diet to the anteater, which leads people to assume they are the same animal. However, the aardvark is its own species entirely, and in fact, it is more closely related to elephants than to anteaters. 

Unique Diet

Aardvarks are insectivores that eat ants and termites. They use their keen sense of smell to locate ant nests and termite mounds over great distances. Aardvarks have the highest number of olfactory turbinate bones of any mammal on the planet. An aardvark has about 9 -11 of these specialized bones which help support the olfactory bulb in the brain, where smells are processed. This larger-than-average olfactory system allows the aardvark to track such tiny creatures like ants and termites from far away. They have been observed swinging their heads back and forth close to the ground, much like a metal detector, to pick up a scent. 

Once an aardvark locates a termite mound, it uses its claws to break open the cement-hard structure. Its tongue, coated in sticky saliva, slurps up the exposed insects in seconds. The highly adapted tongue of an aardvark can be up to 1 foot long. Over the course of a night, a single aardvark eats over 45,000 termites. Amazingly, all of this is done without chewing. 

While aardvarks are classified as insectivores, they make one exception in their diet for a very unique fruit, the aardvark cucumber. This African melon looks similar to a cantaloupe but is grown completely underground. Aardvarks easily dig up the fruit and eat its watery, seed-filled interior. Once the fruit is digested, the seeds are dispersed by the aardvarks that cover their dung in dirt, effectively planting these seeds in the soil with a natural fertilizer. This symbiotic relationship helps propagate the aardvark cucumber, whose existence is entirely dependent upon the aardvark.

Photo by Nick Helme from Wikimedia Commons

Cultural Significance

The aardvark is regarded as a symbol of resilience in some African cultures due to its unrelenting bravery in tearing down termite mounds. The aardvark has very thick skin which helps avoid injury from hundreds of termite and ant bites. Because of their nocturnal habits and solitary nature, aardvarks are not a common sight during the day. It is said that anyone who is lucky enough to see one is blessed. 

Earth Engineer

Aardvarks are adept earth-movers known to create specialized burrows to live in. These burrows provide shelter away from the sun and from predators. Its powerful claws are specially adapted to move massive amounts of dirt in minutes, which helps the aardvark excavate multiple chambers within the den.  

Some burrows can be up to 10 feet deep and over 20 feet long. There are multiple entrances to the same burrow so the aardvark has a chance to escape if a predator poses a threat. Aardvarks have been observed to be very cautious creatures and practice an unusual ritual before exiting their abode. The aardvark stands at the edge of its burrow and uses its excellent sense of smell to detect any nearby predators. It listens for danger and emerges slowly. The aardvark then jumps a few times, pauses, and heads out for the night. Because aardvarks are primarily nocturnal, they don’t have much need for vivid sight and are colorblind. Their long ears and nose do the seeing for them. 

The physiology of these soil architects may strike some as strange, but it serves a purpose. The odd, arched silhouette of the aardvark is caused by its hind legs being longer than its front, which gives them a stronger stance when digging. This adaptation, combined with their formidable claws and muscular forelimbs, allows the aardvark to dig a hole 2-feet deep in just 30 seconds – much faster than a human with a shovel.

Photo by Louise Jobert from Wikimedia Commons

Ecological Importance

When aardvarks have depleted most of their territory’s termite mounds or ant nests, they must move on to new hunting grounds. Their abandoned burrows don’t stay empty for long and are occupied by a variety of species. Hyenas, wilddogs, warthogs, civets, and porcupines make their homes in aardvark burrows. The aardvark has an incredible impact on its environment by sculpting the very landscape itself and providing shelter for other creatures.

If you want to learn more about how aardvark burrows support other animals, check out this article documenting the one of the first observations of predators and prey cohabitating in the same burrow.

Burrowing away now,
Joely


Joely Hart is a wildlife enthusiast writing to inspire curiosity about Earth’s creatures. She holds a Bachelor’s degree in creative writing from the University of Central Florida and has a special interest in obscure, lesser-known species.


Sources and Further Reading:
https://www.miamiherald.com/news/nation-world/world/article274890346.html
https://www.thoughtco.com/10-facts-about-aardvarks-4129429
https://a-z-animals.com/animals/aardvark/
https://animalia.bio/aardvark#facts
https://www.britannica.com/animal/aardvark
https://carnegiemnh.org/a-is-for-aardvark/
https://nationalmuseumpublications.co.za/aardvarks-orycteropus-afer-and-their-symbolism-in-african-culture/

Featured Creature: Prairie Dog

Have you ever heard of a squirrel that barks?

Let me introduce you to the Prairie Dog. 

Sometimes, when walking alone in the high grasslands of the Western United States, you may feel as if you are being watched. 

My first encounter with prairie dogs in the wild occurred as I stood in an empty prairie just outside of Badlands National Park in South Dakota. As I meandered along, minding my own business, dozens of furry creatures with beady little eyes appeared, propped themselves up on their hind legs, and began to follow my every step. Prairie dogs are adorable, it is true, but when you see a dozen spread out, standing upright, watching you intently, it can be a bit disconcerting.

They were, however, no threat, and weren’t eyeballing me just to judge me. A prairie dog standing on his hind legs – “periscoping” as it is known – is simply keeping watch for predators. And their distinctive bark? It may sound like “yip,” but it is actually a sophisticated language developed over thousands of years that is still not fully understood by scientists. 

Prairie dog barks convey everything about a predator’s size, speed, and location. According to a study at the University of Northern Arizona led by Con Slobodchikoff, Ph.D (see video linked below) pitch, speed, and timbre were all altered in a consistent manner corresponding to the species of predator and the characteristics of each. Certain “yips” could even be interpreted to represent nouns (the threat is “human”), verbs (the “human” is moving toward us), and adjectives (the “human” is wearing an ugly yellow shirt). So now that I think about it, I guess they were judging me, and I am not sure how I feel about that. But still, those are some impressive squirrels.

Wait, did you say squirrels?

Yes.

Squirrels. From the Sciuridae family. Prairie dogs are marmots (or ground squirrels) that bark like a dog, prompting Lewis and Clark to label them “barking squirrels,” which may lack points for creativity but is at least more accurate than calling them “dogs.” Prairie dogs, in fact, have no connection to dogs whatsoever.

Amaury Laporte (CC BY 2.0 via Wikimedia Commons)

There are five major species of prairie dog, who all live in North America at elevations between 2,000 and 10,000 feet. The Black-Tailed prairie dog covers the largest territory, filling an extensive region from Montana to Texas. Gunnison’s prairie dogs occupy the southwest near the Four Corners region. White-Tailed prairie dogs reside in Wyoming, Utah, and Colorado. Mexican and Utah prairie dogs belong to Mexico and Utah, respectively, and both are considered endangered.

As you may have observed, prairie dogs live in areas prone to harsh extremes of weather. To protect themselves, they dig extensive burrow networks with multiple entrances, designed to create ventilation, route flood water into empty chambers deep underground, and keep watch for predators. Their burrows connect underground, organized into sections called “coteries,” each of which contains a single-family unit responsible for the maintenance and protection of their area. Multiple coteries become “towns” of startling size and complexity. According to the National Park Service, the largest prairie dog town on record covered 25,000 square miles, bigger than the state of West Virginia!

That IS an impressive squirrel.

Indeed.

Amaury Laporte (CC BY 2.0 via Wikimedia Commons)

Over the years, however, the prairie dog’s range has shrunk, scientists estimate, by as much as 99%, largely because of agriculture. Farmers and ranchers tend to regard prairie dogs as a nuisance, as they sometimes eat crops (they are mostly herbivores) and their holes create a hazard for livestock. They will bulldoze their towns or conduct contest kills to remove them, which has had devastating impacts.

Experts consider prairie dogs to be a keystone species. Their loss affects hundreds of other species who rely on them for food or use their burrows for shelter. They are instrumental in recharging groundwater, regulating soil erosion, and maintaining the soil’s level of production. Prairie dog decline, in fact, eventually leads to desertification of grassland environments.

So, an impressive AND important squirrel?

Yes, and the restoration of prairie dog habitats could be a crucial step in mitigating the effects of climate change.

If you’ve caught prairie dog fever, dive deeper into the resources below. And to learn more about Prairie Dog language, check out this fascinating video:

Hoping one day to converse with my personal prairie dog army,

Mike


Mike Conway is a part-time freelance writer who lives with his wife, kids, and dog Smudge (pictured) in Northern Virginia. 


Sources:
https://animals.net/prairie-dog/
Prairie dog – Wikipedia
https://www.humanesociety.org/resources/what-do-about-prairie-dogs
Prairie Dog Decline Reduces the Supply of Ecosystem Services and Leads to Desertification of Semiarid Grasslands | PLOS ONE
Prairie Dogs | National Geographic
Prairie Dogs: Pipsqueaks of the Prairie (U.S. National Park Service) (nps.gov)

Featured Creature: Beaver

Photo by Derek Otway on Unsplash

Which creature fights fires, creates wetlands, recharges groundwater, alters landscapes, and is a climate hero?

Beavers!

Photo by Derek Otway on Unsplash

At Bio4Climate, we LOVE beavers. We’re borderline obsessed with them (or maybe not so borderline) because they do SO much for Earth’s ecosystems, natural cycles, and biodiversity. These furry, water-loving creatures are finally beginning to receive the recognition they deserve in mainstream media now that more people see how their existence and behaviors lead to numerous benefits for everyone’s climate resilience.

We are one of the many organizations advocating for their reintroduction across North America and some places in Europe. For this reason, when I spotted one on a hike during my time in Tennessee, I did what any Bio4Climate team member would do: jump in excitement, yell out “Oh my gosh it’s a BEAVER!” and take a picture that I’ll treasure forever.

Photo by Tania Roa

The rockin’ rodent

Beavers live in family groups of up to eight members. Offspring stay with their parents for up to two years, meanwhile helping with newborns, food gathering, and dam building. To create dams, beavers use their large teeth to cut down trees and lug over branches, rocks, and mud until they successfully slow down the flow of water. These dams include lodges that beavers use as bedrooms and to escape from predators. Dams are designed according to the water’s speed: in steady water, the dam is built straight across, and in rushing water the dam is built with a curve. These engineers build their dams in a way that makes them nearly indestructible against storms, fires, and floods.

Look at those bright orange teeth! The color is thanks to an iron-rich protective coating. Beaver teeth grow continuously, and require gnawing on trees for trimming.

Photo by Denitsa Kireva: Pexels
Photo by tvvoodoo on Freeimages.com

Furry firefighters

Beaver dams are what make these rodents, the largest ones in North America, so special. When dams alter the flow of water, they create ponds that stretch out a river into a wide wetland. These ponds filter pollutants and store nutrients that then attract a variety of wildlife including fish seeking nurseries, amphibians looking for shelter, and mammals and birds searching for food and water sources.

The abundance of wildlife and the storage of necessary nutrients in beaver ponds classifies these places as biodiversity hotspots, meaning they are “biogeographic regions with significant levels of biodiversity that are threatened by human habitation” (Wikipedia). Beaver ponds also store sediment, and this helps recharge groundwater. Due to the sheer wetness of these ponds, and how deep the water filters into the soil, fires are often extinguished as soon as they reach a beaver pond. In this way, beavers are nature’s firefighters, of which we need many more in areas where extreme heat is increasing.

“There’s a beaver for that”
Ben Goldfarb

  • Wetland Creation
  • Biodiversity Support
  • Water Filtration
  • Erosion Control
  • Wildlife Habitat
  • Flood Management
  • Drought Resilience
  • Forest Fire Prevention
  • Carbon Sequestration
  • They’re Cool (pun intended)

Beavers are considered ‘ecosystem engineers’ because they actively shift the landscape by fluctuating the flow of water and the placement of plants and trees. Muskrats, minks, and river otters also find refuge in beaver lodges. When beavers take down trees, they create pockets of refuge for insects. Using their constructive talents, beavers significantly modify the region and, in turn, create much-needed habitat for many. Numerous creatures rely on beaver dams for survival, and the local ecosystem dramatically changes when a beaver family is exterminated; for these reasons, we also consider them ‘keystone species.’

Disliked dam builders

Despite the positive impact beavers have on biodiversity and ecosystems, we humans have viewed them as fur, pests, and perfume. By 1900, beavers went nearly extinct across Europe and North America. We hunted them for their fur in response to fashion trends, and trapped them for their anal musk glands, or castors, which produce castoreum, a secretion that beavers use to mark their homes and that humans use to make perfume. When beaver populations plummeted, so did the number of dams and ponds, meaning vast swaths of land were drastically altered during this time – and not for the better. To this day, we kill beavers when they wander into military bases or near urban areas since we see their dam-building behaviors as potentially damaging to man-made properties.

Thankfully, as more ‘Beaver Believers’ speak out against these practices and more authorities recognize the importance of beaver benefits, these rodents are beginning to return to their original homes. California recently passed a program specifically for beaver reintroduction efforts across the state. Washington, Utah, and Massachusetts are other states witnessing the return of beavers. People like Skip Lisle of Beaver Deceivers are designing culverts that prevent beaver dams from damaging infrastructure, but allow the beavers to create their biodiverse-filled ponds. These are just a few examples of the ways we can coexist with beavers, and in turn heal our communities.

Beaver Dam on Gurnsey Creek commons.wikimedia.org

Climate heroes

There are places in North America where water sources are decreasing for all living things, and in other regions the amount of rainfall is increasing while the amount of snow is decreasing. These weather conditions are detrimental to all of our health, unless we welcome back beavers.

As the effects of climate change and biodiversity loss increase, storing water, preventing runoff and erosion, and protecting biodiverse hotspots become more important by the hour. By restoring local water cycles, beaver ponds provide a source of life. By spreading water channels and creating new ones, beaver dams prevent flooding and stave off wildfires. By encouraging the cycling and storage of nutrients, beaver ponds nurture soil health and that leads to carbon sequestration. We all have something to gain from beavers as long as we allow them to do what they do best: build those dams.

To learn more about beavers, watch the video below and the two in the ‘Sources’ section. We also highly recommend Ben Goldfarb’s Eager: The Surprising Secret Life of Beavers and Why They Matter for further reading.

For all creatures that deserve a feature,

By Tania Roa


Sources:
Why BEAVERS Are The Smartest Thing In Fur Pants
Why beavers matter as the planet heats up 
9 Amazing Beaver Facts
Environmental Benefits of Beavers – King County 
8 Facts to Celebrate International Beaver Day | Smithsonian’s National Zoo 

Featured Creature: Giant Barrel Sponge

What creature grows tall and sturdy, cleans up its neighborhood, and defends itself from predators – all without moving a muscle?

The Giant Barrel Sponge, or Xestospongia muta!

Photo By Twilight Zone Expedition Team 2007, NOAA-OE – NOAA Photo Library (Public Domain, via Wikimedia Commons)

A Giant Barrel by any other name… 

Giant barrel sponges are aptly named for their shape and great size. They grow over 1 m tall, but only grow an average of about 1.5 cm a year. After all, good things take time! 

Giant barrel sponges come in a range of colors, depending on the presence of the cyanobacteria that they work with in symbiosis. They can be pink, purple, brown, reddish brown, and gray, and tend to be different colors at different depths. 

You may be wondering why this “giant barrel” doesn’t look very much like Spongebob Squarepants, or the sponge you use to clean up in the kitchen. Well sponges, or animals of the phylum Porifera, come in all shapes and sizes, and there is great diversity among the 8,550 species of them. Sponges are quite ancient, with their oldest fossil records dating back 600 million years, so they’ve had time to differentiate and find their own ecological niches.

The giant barrel sponge is known as the “Redwood of the Sea.” The phrase comes from the fact that giant barrel sponges share the tendency for individuals to live long lives, from a few hundred to thousands of years old. In fact, the oldest known giant barrel sponge is over 2000 years old. 

Old age isn’t the only thing they have in common with their counterparts on land. Like the magnificent redwoods, they do wonders to clean up and support the environment around them. Giant barrel sponges can filter up to 50,000 times their own volume in water in a single day. They also provide habitat to several small fish and other invertebrates that can be found living inside or on the surface of the sponge.

Photo by Andre Oortgijs (CC BY-SA 3.0 via Wikimedia Commons)

How does such a giant creature sustain itself?

Although giant barrel sponges are, well, giant, their diet is anything but. These creatures, like many species of whales, sustain their size not by eating very large sources of food, but by eating large volumes of it. Giant barrel sponges are filter feeders, and consume microorganisms from the water around them that they pump through their bodies. The sponges have special cells along their inner cavities called choanocytes, which work to facilitate the movement of water and the capture of food from it.

In their ocean food chain, giant barrel sponges take their place above their symbiotic partners cyanobacteria, and are consumed in turn by macroorganisms like fishes, turtles, and sea urchin. They try to defend themselves by releasing chemicals to repel their predators, but there’s only so much they can do when stuck in one place, waiting to be ingested by so many types of marine life. Like other filter feeders, giant barrel sponges ultimately form an important branch in the transfer of nutrients from very small to much larger life forms.  

They don’t even have tissues, let alone organs, but their simple structure is more than enough to ensure their survival and proliferation. Giant barrel sponges reproduce by spawning, and are one of the few species of sponge that undertake sexual reproduction. Males and females release sperm and egg cells into the ocean synchronously, so that when the time comes, they have a chance of contributing to a fertilized egg that grows into a larva and, after being carried by currents to a new spot of the ocean floor, establishes itself as an independent sponge. 

Check out this short video of the spawning phenomenon:

A valued community member

Giant barrel sponges are native to the oceans of the Americas, found primarily in the Caribbean Sea, and observed as far south as the coasts of Venezuela. 

Due to their filtration capabilities, giant barrel sponges are real assets to the ecosystems they are a part of, but boosting water quality is not the only ecological role they play. As mentioned, many other creatures live in and around the cavernous sponges, and giant barrel sponges are one of the largest organisms in the coral reef environments where they are found. They are thought to help coral anchor to substrate (the mix of mineral, rock, and skeleton that binds reefs together), and themselves make up about 9% of coral reef substrate in certain areas where they are found. By helping in this binding process, giant barrel sponges can play an important role in reef regeneration. 

Though the giant barrel sponge is not currently classified as threatened, like all of us, it is living in vulnerable times, as reef habitats are weakened in warming, acidifying waters. It is susceptible to a disease called Sponge Orange Band disease that afflicts all kinds of sponges. They can also be damaged or killed by human activities that disturb reefs and break sponges off from their surroundings. 

On the flip side, when these great creatures are doing well, they enable the thriving of life all around them. May all of us aspire to say the same.

With one giant smile,
Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources and Further Reading:
https://animaldiversity.org/accounts/Xestospongia_muta
https://oceana.org/marine-life/corals-and-other-invertebrates/giant-barrel-sponge
https://en.wikipedia.org/wiki/Giant_barrel_sponge
https://www.americanoceans.org/species/giant-barrel-sponge
https://oceanservice.noaa.gov/facts/sponge.html