Featured Creature: Zombie Ant Fungus

What creature preys on ants and other insects, invading their bodies, seizing control of their minds, and killing them off to reproduce, all the while inspiring zombie stories that terrify us humans?

Welcome to Zombie Ant Fungus, or Ophiocordyceps Unilateralis!

Photo from Encyclopedia Britannica

One of the most amazing things about being in touch with the natural world is the uncontained sense of wonder that infuses us as we learn about the incredible range of biodiversity out there to be discovered. My recent pieces on Mantis Shrimp and Ghost Pipes are good examples of diversity and symbiosis, while this curious creature shows off the parasitic side of interspecies relationships. Ophiocordyceps unilateralis, commonly known as Zombie Ant Fungus, is an insect-pathogenic fungus, discovered by the British naturalist Alfred Russel Wallace in 1859, and currently found mostly in tropical forest ecosystems.

The Zombie Ant Fungus is like no other creature I know; it’s like a runaway horror movie that even ants shall encounter with fear, and try their best to avoid. Its story is intriguing and represents scary stuff. Indeed, this strange creature is featured in two books by M. R. Carey called The Girl with All the Gifts and The Boy on the Bridge, as well as in a video game and show, The Last of Us, which recently wrapped up its first season to critical acclaim. In that feature, humans struggle to survive after an infectious fungus turns us into zombies largely in the style of Ophiocordyceps

Who knew that such an innocent seeming creature could become so devious and troublesome? Is there anywhere for us to hide? We need not worry. This pathogen can’t transfer to us, or at least to do so would take many millions of years. So I guess we can relax…

Photo from Shutterstock

There are some major differences between how the fungus is portrayed in shows like The Last of Us and in real life. Cordyceps does not typically infect other hosts through the mouth, and the infected aren’t connected to each other through a network. 

Most importantly, the fungus cannot infect humans, because our body temperatures are too high for most of them. Phew! In fact, people have been eating Cordyceps for centuries now without turning into zombies. It’s a traditional Chinese medicine, used to treat kidney disease and other ailments. So let’s set aside these worries, and get back to the reality of these intriguing creatures.

Photo from the New York Times

A Sinister Cycle

These fungi live in jungle habitats, such as in tropical forests, where a species of carpenter ant, Camponotus Leonardi, lives in the high canopy and has an extensive network of aerial trails. But sometimes the canopy gaps are too far apart and difficult to cross, so the ants’ trails descend to the forest floor where they are exposed to Zombie Ant Fungus (Ophiocordyceps unilateralis) spores. 

The spores attach to these ants’ exoskeletons and break through, invading its host’s body as a parasite. Like other fungi pathogenic to insects in the genus Ophiocordyceps, this fungus targets a specific host species, in this case the carpenter ant. However, this fungus may also parasitize other closely related species of ants or other insects, though these come with lesser degrees of host manipulation and reproductive success. Some of this fungus’ subspecies, such as Ophiocordyceps sinensis, colonizes ghost moth caterpillars instead of carpenter ants and erupts from their head like a unicorn horn.

Check out the sprouting phenomenon taking place in an infected bullet ant:

As in zombie lore, there’s an incubation period where infected ants appear quite perfectly normal and go about their business undetected by the rest of the colony. First, the spore infects the ant and fungal cells start growing inside its body with no notable effects from the outside. But eventually, the infected ant stops participating in the foraging efforts of the colony and stops communicating well with its nest-mates. Then the ant becomes hyperactive and departs from the daily rhythms of the other ants. 

Most carpenter ants, for example, forage during the nighttime, but the infected ant basically becomes active all the time. That’s unusual because social insects like ants usually have something called “social immunity”, where sick members get kicked out of the group to prevent the rest from becoming infected by them. Unfortunately, some ants don’t always employ this mechanism to effectively protect themselves from Ophiocordyceps

While the infection is 100 percent lethal, the goal of this fungus isn’t to convert all the ants into the walking dead. For ecosystems to stay balanced, these fungi tend to keep host populations in check by usually only infecting a few ants in a local colony at any given time, though they also have been known to wipe out entire colonies of ants at times.

Dead Adult Calyptrate Fly by a fungus of the Genus Ophiocordyceps
Photo from Getty Images / iStockphoto

This particular species of Zombie Ant Fungus drops its spores in the jungle on ants and takes sufficient control of them that they leave their nest and fellow ants to climb up off the jungle floor to a height of exactly 10 inches (25 cm) where the conditions are just right for the fungus to thrive and propagate.

The designated victim then attaches to the underside of a leaf with its mandibles while the fungus grows inside its host and sprouts a tiny mushroom-like growth. This fruiting body of fungus eventually distributes its spores to continue this cycle of propagation, infecting more ants in turn in a manner that is capable of infecting entire ant colonies. 

Spread through Time and Space

This species shows some morphological variations due to its wide geographic range from Japan to the Americas. This may result from host-specific commitments to diverse species of ants in different areas, and helps avoid subspecies competition by occupying distinct ecological niches.

Photo from Wired

Ophiocordyceps also appears to be an ancient creature. In 2010, scientists identified a 48-million-year-old fossil of a Zombie Ant with a death grip on a leaf, verifying that zombifying fungi have been around for a while. But this fossil didn’t offer hints on how the fungus evolved. 

Further work concluded that all Ophiocordyceps species descended from a common ancestor which started out by infecting the larvae of beetles that lived in rotting logs. When the beetle eggs hatched, the larvae crawled around alone inside the log, chewing on wood. When beetle larvae came into contact with a spore, the fungus would then invade the insect’s body to feed on its muscle, killing the beetle without any zombie drama. After that, the fungus would grow its stalk and spread spores around the dead body. Other larvae crawling inside the log were thus infected, prolonging this cycle of life and death.

 

Schematic representation of the ant behavioral manipulation caused by natural products secreted by Ophiocordyceps unilateralis from Wikipedia

The theory is that millions of years ago, the fungi got picked up by ants that also lived in logs. In their new ant hosts, the fungus had already acquired an ability to feed on muscles, grow stalks and spread. 

But these ants brought a new challenge, because, unlike solitary beetles, ants live in crowded nests. Diseases can wipe out an entire colony, so the ants ruthlessly attack any individuals that show signs of sickness. This meant that Ophiocordyceps could not spread the way it had in beetles, just by killing its host and sending out spores. However, by keeping ant hosts healthy enough as they were being parasitized, the invasive fungus could zombify the ant host to move it out of the main nest of ants and climb up a nearby plant, from which it could spread its spores to other potential hosts. 

This is how the fungi’s transition to ants set off an evolutionary explosion. Once Ophiocordyceps had evolved to live in one species of ant, it began hopping to other new species. It is also suspected that there are hundreds of other species of Ophiocordyceps still to be discovered, perhaps with a wider range of potentially infectious impact…

Photo from Live Science

Growth by Infection

When the fungus infects a carpenter ant, it grows through the insect’s body, draining it of nutrients and hijacking its mind and behavior. Over the course of a week, it compels the ant to leave the safety of its nest and ascend a nearby plant stem. When this fungus invades the ant, taking over its muscles and mandibles, there is apparently no intervention into the ant’s brain itself. 

The invasive fungus forces the ant to permanently lock its mandibles around a major vein on the underside of a leaf to attach itself. The ant then loses control of its mandible and remains fixed in place, hanging upside-down on the leaf. This lockjaw trait is popularly known as the “death grip” and is essential in the fungus’s lifecycle. This “death grip” prevents the ant from falling as it dies hanging upside down, thus enabling the proper growth of the fungus’ fruiting body. The “death grip” is thought to be caused by a secretion of fungal compounds that atrophies the ant’s mandibular muscles, making it impossible for the ant to unclench.

Mandibular “Death Grip” (Photo by Katja Schultz from Flickr)

Once the ant is in place on the leaf’s underside, more fungal mycelia sprout, securely anchoring it to the plant substrate while secreting antimicrobials to ward off any other competitive fungi. Next, the fungus sends a lengthy growth through the ant’s head, growing into a bulbous capsule full of spores on a single, wiry yet pliant, darkly pigmented stalk rising through the back of the ant once it is dead. 

This spore-bearing sexual structure appears as a bulge on the stalk, below its tip, which forms the fungus’ fruiting body. As the ant typically climbs onto a leaf that overhangs its colony’s foraging trails, its fungal spores will then rain down upon fellow ants below, ensuring that the cycle continues.

How to Create a Zombie: The View from the Inside

How this fungus takes over its host has been carefully analyzed. Once spores drop onto an ant, they attach to the ant’s exoskeleton and eventually break through it with mechanical pressure and the help of enzymes. Yeast stages of the fungus spread throughout the ant’s body and apparently produce compounds that affect the ant’s behavior such that it exhibits irregularly timed full-body convulsions that dislodge it from its canopy nest, dropping it to the forest floor. These infected behaviors work for the benefit of the fungus in terms of its own growth and transmission, increasing its fitness and survivability.

Photo by Andreas Kay

When the fungus first enters its host, it floats around the ant’s bloodstream as single cells, replicating copies of itself. Then, at some point, these single cells join together by building short tubes, which are  only seen in fungi that infect plants. Hooked up together in this way, these cells in tubes successfully communicate and exchange nutrients with each other. 

The next step is to invade the ant’s muscles, either by penetrating muscle cells or growing into interstitial spaces between these cells. The result is a muscle fiber encircled and drained by a network of interconnected fungal cells in a manner unique to this species, as shown in this brief simulation that represents the process quite clearly.

Zombies that don’t eat brains?

The Zombie Ant Fungus is often described as a single entity, which corrupts and subverts a host. But this fungus can also be seen as a colony, much like the ants it targets. Individual microscopic cells begin life alone but eventually come to cooperate, fusing into a superorganism. 

Together, these brainless cells can take control of a much larger creature and manipulate its behavior. But perhaps surprisingly, they do that without ever physically entering or touching the brain itself, while infiltrating the ant’s body and muscles, including its head. Thus, this fungus can manipulate its host through a very precise sort of chemically-guided muscular control that does not affect the ant’s brain. This makes the intricacy of the fungal invasion even more compelling and disturbing, depending on how aware the ant is of this intrusive occupation.

Photo from Earthly Mission

Maintaining the Life Cycle

It is worth noting that throughout its lifecycle, the fungus must meet unique challenges in its metabolic activities. First, the fungal pathogen must attach securely to the arthropod exoskeleton and penetrate it – while avoiding or suppressing its host’s defenses – and then control its host’s behavior before killing it. Finally, it must protect the ant’s carcass from microbial and scavenger attack so that it can reproduce successfully. 

This invasion process, leading up to the host ant’s mortality, takes 4–10 days, and includes a reproductive stage where fruiting fungal bodies emanate from the ant’s head, eventually rupturing to release fungal spores. However, the short viability of the fungal spores presents a challenge. The fungus uses its host’s vitality to sustain the growth of the fungus’s fruiting body and enable successful reproduction. To do so, this fungus fortifies the ant cadaver to prevent its decay, which consequently ensures the prolonged growth of the fruiting body. 

But this composite creature of zombie-ant fungus is, in turn and ironically, susceptible to fungal infection itself. This can limit its impact on ant populations, when it might otherwise devastate entire ant colonies. Ophiocordyceps unilateralis suffers from an unidentified fungal hyperparasite, reported in the press as the “antizombie-fungus fungus,” that results in only 6–7% of the primary parasite’s spores being viable, limiting the damage this fungus can inflict on ant colonies. This hyperparasite attacks Zombie Ant Fungus just as the fungal stalk emerges from the ant’s body, thus stopping the stalk from generating and releasing its spores. 

This suppressive effect is caused by the weakening of the fungus by the hyperparasite, which may limit the viability of its infectious spores. There are additional species of fungi that can grant beneficial and protective assistance to the ant colony, as well. A complicated picture indeed!

Dr. João Araújo of the New York Botanical Garden and his team discovered two new genera of fungus. (Photos by João Araújo)

For example, two novel lineages of fungi, each belonging to its own genus, were recently discovered infecting a species of Zombie Ant Fungus in Florida. One puts a fuzzy white coating on the Zombie Ant Fungus, while the other is harder to spot, with little black blobs that look like fleas. The fungi attacking the Zombie Ant Fungus don’t zombify their host, but they do feed on its tissues and appear to cause it harm by castrating the fungus so it cannot shoot its spores any longer. Then the attacker proceeds to grow and consume the entire fungus. 

Though these new parasites are the first to be seen to infect the Zombie Ant Fungus, there could be others out there. Parasitism is a lucrative form of lifestyle, experts say; it might even be the most dominant one on the planet! (Maybe our politics illustrate that…)

Ants also can protect themselves by grooming each other to remove microscopic organisms that could potentially harm the colony. Consequently, in host–parasite dynamics, both the host and the parasite are under selective pressure: the fungal parasite evolves to increase its successful transmission for reproduction, while the ant host evolves to avoid or resist the infection by the parasite, in this case the Zombie Ant Fungus. And so an evolutionary battle continues…

A fuzzy white fungus grows on top of the parasitic Zombie Ant Fungus
(Photo by João Araújo)

The principal carpenter ant hosts of Ophiocordyceps unilateralis have also evolved adaptive behaviors to limit the contact rate between uninfected and thus susceptible hosts and already infected hosts, thereby reducing the risk of transmission to their healthy fellow ants by evolving efficient behavioral forms of social immunity. As mentioned, the ants clean the exoskeletons of one another to decrease the presence of spores which are attached to their cuticles. 

These ants also notice the abnormal behavior that indicates when a member of the colony is infected, resulting in healthy ants carrying infected individuals far away from the colony to avoid fungal spore exposure. Furthermore, since most worker ants remain inside the nest boundaries, only foragers who venture outside are at any significant risk of infection. 

In addition, the fungus’s principal host species, the carpenter ant (or Camponotus Leonardi) tries to avoid the forest floor as a defense method by building its nests high in the canopy, with a broad network of aerial trails. These trails occasionally must move down to the ground level, where infection and graveyards occur, due to wide canopy gaps difficult for the ants to cross while staying safely high in the forest canopy. When these trails do by necessity descend to the forest floor, their length on the ground is as short as possible, only 10-18 feet (3-5 m) or so before climbing back up into the canopy. This shows that these ants avoid zones of infection wherever they can. This method of defense appears to be adaptive to this specific threat, as it is not observed in undisturbed forests where the Zombie Ant Fungus is absent.

Photo from the New York Times

When Ophiocordyceps unilateralis-infected ants die, they are generally found in regions containing a high density of ants which were previously manipulated and killed, which are termed “graveyards” of 70-100 feet (20-30 m.) in range. The density of dead ants within these graveyards can vary with climatic conditions, where humidity and temperature influence this fungus’s effects on the host population. It seems that large precipitation events at the beginning and end of the rainy season stimulate fungal development, which leads to more spores being released and ultimately to more individual ant hosts being infected and killed.

The Wide World of Insect Parasites

What we have here is a hostile takeover of a uniquely malevolent kind. Enemy forces invade a host’s body and use that body like a walkie-talkie to communicate with its fellows to influence the brain from afar, while exercising a more direct control over the ant’s muscles like a puppeteer. Once an infection is underway, the neurons in the ant’s body that give it control of its muscles start to die, as this fungus slowly takes over, effectively cutting the host ant’s limbs off from its brain, as it inserts itself in that place, releasing chemicals that control the ant’s muscles. After the fungus enters the ant, it propagates its invasive cells until they surround the host’s brain, at which point the fungus secretes compounds and takes over the ant’s central nervous system, enabling it to manipulate the ant to reach the forest floor and climb up the vegetation.

Photo from How Stuff Works

In this way, the ant ends its life as a prisoner in its own body, with its brain still in the driver’s seat while the fungus has seized control of the steering wheel in a cruel prolonging of the ant’s death in an agony of helpless surrender. The fungus survives and propagates successfully at the cost of these ants in this dark drama. 

But not only ants can be infected with these creative parasites. 

Much like the microbiome in our own guts, insects contain a whole array of fungal species, of which few have been closely studied, much less flagged for causing behavioral manipulations. Some are known, however. 

One example is Entomophthora muscae, which literally means “insect destroyer of the fly” in Greek. It causes infected flies to climb a certain height, glue themselves at the mouth to a plant, and assume an abdomen-up “death pose” that’s optimal for spore dispersal. (Watch the flies turn into zombies here.)

And there’s Massospora cicadina, which pumps its cicada hosts full of hallucinogenic drugs and causes part of their abdomens to fall off. The bare-bottomed cicada then wiggles its way towards death – once again in the interest of spore dispersal.

Could this happen to us? Personally, this whole scenario gives me the willies, leaving me surprisingly sympathetic to these victimized ants and other infected insects, while also being enthralled by a sense of wonder about the endless variety of nature’s solutions to the reproductive urge of species to propagate themselves. Perhaps we humans should become more alert to all these striking opportunities for Mother Nature to assert her ultimate dominance over us. Some scientists believe that, by studying this Zombie Ant Fungus, we can learn a lot more about how the brain works – and how it might be taken over, which is surely some food for dystopian thought.

Photo from Utrecht University

Medicinal Properties

Ophiocordyceps are known in the pharmaceutical world to be a medically important group. These Zombie Ant Fungi (Ophiocordyceps unilateralis) and related species are known to engage in an active secondary metabolism to produce antibacterial substances that protect the fungus-host ecosystem against further pathogens during fungal reproduction. 

Because of this secondary metabolism, chemists who study natural products have taken an interest in this species, discovering small molecule agents of potential interest for use as human anti-infective and anticancer agents. These natural products are reportedly being investigated as potential leads in discovery efforts toward the treatment of immune diseases, cancerous tumors, diabetes and high cholesterol levels. 

Another species of fungus, Ophiocordyceps sinensis, already mentioned above as a parasitic fungus-caterpillar husk combination, is prized in traditional Tibetan and Chinese medicine as an immune booster, cancer treatment, and aphrodisiac.

Moreover, red naphthoquinone pigments produced by Ophiocordyceps unilateralis are used as a dye for food, cosmetic, and pharmaceutical manufacturing processes. Curiously, naphthoquinone derivatives produced by the fungus also show a red color under acidic conditions, and a purple color under basic conditions. These pigments are stable under a wide variety of conditions as well as not being toxic, which makes them applicable both for food coloring and as a dye. 

These attributes also make it a prime candidate for antituberculosis testing in TB patients, by alleviating symptoms and enhancing immunity joined with other chemotherapy drugs. So even this seemingly-nasty creature has some benefits for us humans, once we are able to look beyond its fearsome characteristics.

But this is so generally true of the wondrous variety of nature’s creatures such as featured in this series. We look at them through our human eyes, asking what they can do for us, when the whole natural world is swimming along quite well without our help or needing us for anything. The whole system should have our respect, just for including us in its amazing complexity of life forms and how it all works.

So here’s to a totally infectious and all-consuming curiosity!

Fred


Sources:
https://www.pnas.org/doi/full/10.1073/pnas.1711673114
https://hasanjasim.online/how-the-zombie-fungus-infects-ant-bodies-and-takes-control-of-their-minds/
https://en.wikipedia.org/wiki/Ophiocordyceps_unilateralis
https://www.nationalgeographic.com/animals/article/cordyceps-zombie-fungus-takes-over-ants
https://www.cnn.com/2022/11/18/world/zombie-ant-fungus-parasite-mystery-scn/index
https://www.npr.org/2023/01/30/1151868673/the-last-of-us-cordyceps-zombie-fungus-real
https://www.vox.com/culture/2023/1/21/23561106/last-of-us-fungus-cordyceps-zombie-infect-humans
https://www.nytimes.com/2019/10/24/science/ant-zombies-fungus.html
https://www.nature.com/articles/s41598-020-63400-1
https://www.nationalgeographic.com/science/article/parasitic-fungus-evolve-to-control-humans

Featured Creature: Turkey Tails

Which fungi creature gets its name from a bird, helps heal internal wounds, and benefits people worldwide?

Turkey tails!

Reinhold Möller (CC BY-SA 4.0 via Wikimedia Commons)

This year I took two trips – one to Nashville, Tennessee and another to the Northeast, specifically to White Mountain National Forest in New Hampshire (Abenaki Penacook land). Both of these places have more trees than I’m used to in Southern California, so I was instantly amazed by everything that grew throughout these forest wonderlands, especially the turkey tails.

A Bird Fungus

Turkey tails have three scientific names (depending on whom you ask): Trametes versicolor, Coriolus versicolor, and Polyporus versicolor. The common name, turkey tail, derives from the mushroom’s bands that resemble a wild turkey’s tail in color and shape. The ‘versicolor’ in the scientific names refers to the mushroom’s cap and its many colorations, from white, red, orange, to dark brown. This part of the mushroom has a fuzzy texture, almost as if it had tiny hairs all over, and is extremely flexible so you can bend it without breaking it. The ‘trametes’ in one of the scientific names refers to the genus, and the ‘polyporus’ refers to the placement of the pores. Turkey tails are a type of mushroom with pores on their undersides, in contrast to other mushrooms that have gills on their sides. 

Polyporous mushrooms tend to grow on dead logs. Turkey tails can be found on fallen trees in nearly every forest worldwide. They grow year-round, but will be extra easy to spot when it’s time to release their spores (in North America, this happens between May and December). You can identify a family of turkey tails by their banding pattern – all the offspring of one individual will sport the same pattern as their ‘parent.’ It’s a fungal fingerprint!

Healthy Tails

Apart from their colors and tail-like shapes, turkey tails are extra intriguing for their health benefits. They contain numerous properties, including:

  • Antioxidants, such as phenols and flavonoids, which reduce inflammation and oxidative stress (an imbalance in our systems when we’re unable to detoxify).
  • Protein-bound polysaccharides (carbohydrates), one being Krestin which promotes immunity to toxins and regulates immune responses. It also activates white blood cells which protect our bodies from harmful bacteria.
  • Prebiotics, which foster beneficial bacteria. They also regulate our gut microbiome, leading to better digestion and lower cholesterol.
  • Fiber, found in many mushrooms, which also promotes better digestion.

People who consume turkey tail extract report better athletic performance, less fatigue, and when combined with chemotherapy, increased effectiveness of cancer treatments. By promoting our body’s natural production of beneficial compounds, and counteracting substances that harm us, turkey tails improve overall health when taken as a supplement.

Matthew Kvocera (CC BY 4.0 via Wikimedia Commons)

Turkey Tea

There are some mushrooms you can eat right after foraging, but turkey tails are not one of those. To receive the many benefits from Trametes versicolor, you’ll need some prep work.

Due to the thick and woody structure of turkey tails, they’re extremely difficult to consume and, therefore, essentially inedible. However, when you dry them out and grind them to create a powder, you can reap their benefits in no time. After letting them dry, and cleaning them to ensure no dirt or insects remain, you can grind them up. The resulting powder can be put into capsules to be taken as a pill-based supplement, or you can brew some tea to extract the most beneficial compounds. Other mushrooms require a process that involves alcohol before eating, but not turkey tails! 

If you’re feeling creative, you can also add the powder to your everyday meals. Since these mushrooms are relatively plain in flavor, people will add the extract to smoothies, oatmeal, or soup to add taste. The powder can be stored for years as long as it’s in an airtight container and kept in the pantry, away from the heat and sun.

We can thank ancient teachings for these turkey tail tips. Traditional Chinese medicine is the first documented time people practiced the art of extracting beneficial compounds from turkey tails. They originally used the extract to treat lung, liver, and spleen issues.

If you try any of these recipes, let us know your experience (you can email us at staff@bio4climate.org)!

A word of caution: If you do decide to forage, for turkey tails or any other organisms, please do so with consideration for the local ecosystem’s health. Only forage what you need, so as to not exploit natural resources.

It’s also best to forage with others when starting out (and it’s more fun this way!). You could join a local foraging group to gain access to resources regarding ecosystem health and potential contaminants in the area. This way, you can learn how to forage without causing harm to your body, other people, or the landscape.

Tea time, anyone?

Tania Roa


Tania graduated from Tufts University with a Master of Science in Animals and Public Policy. Her academic research projects focused on wildlife conservation efforts, and the impacts that human activities have on wild habitats. As a writer and activist, Tania emphasizes the connections between planet, human, and animal health. She is a co-founder of the podcast Closing the Gap, and works on outreach and communications for Sustainable Harvest International. She loves hiking, snorkeling, and advocating for social justice.


Featured Creature: Lichen

Which creature is a combination of two other organisms, comes in bright colors, and helps us measure air quality?

Lichen!

Image by Jerzy Górecki from Pixabay

Master of Symbiosis

Though we know lichens as creatures in and of themselves, lichens are actually a result of symbiosis, a mutually beneficial relationship between two or more species. In the lichen’s case, algae and fungi come together to form a new creature. No two lichens are alike. They vary in form, color, and which type of algae they have – either green, blue-green, or both.

The fungus gives the lichen a majority of its traits, including shape and anatomy. The algae determines the color, from orange to yellow to neon green. The fungus partners with the algae out of necessity for food. Since the algae, or cyanobacteria, can photosynthesize, they provide food for the fungus in exchange for shelter. Therefore, each party relies on the other for survival.

Image by Emmi Nummela from Pixabay

Abundant yet Unique

From hot deserts and windy coastlines to the arctic tundra, lichen are found around the world. In North America alone, there are thought to be 3600 different species! They grow on trees, rocks, and soil. They can even grow on things made out of one of the above, such as a house made out of wood. If a sand dune remains stable for long enough, soil crusts will form and lichens will begin to appear along the crusts. Essentially, all lichens need is something solid to hang onto. 

Lichens require a stable habitat because they take a long time to grow. Every year, they only grow 1-2 mm. To promote their growth cycle, lichens will often partner with moss, adding yet another organism to the party. Mosses are simple plants (meaning they lack roots, stems, and leaves) that retain water, and since lichens have two creatures to sustain (the algae and fungi), this water source is a welcomed one. This partnership is so common that if you look up ‘lichen’ on the internet, a majority of pictures will contain both lichen and moss. They are truly geniuses of cooperation!

The lichen Letharia vulpina at Mt. Gleason, CA (Photo by Jason Hollinger from Wikipedia, CC BY-SA 3.0)

Welcomed by All

At first glance, it may look like lichens harm trees. (After all, if you or I had something bright green or orange growing on our limbs, we should call the doctor). But fear not – lichens don’t harm any plants they attach themselves to. On the contrary, they benefit many other species, such as birds that use lichen as nesting material. Numerous invertebrates see lichen as a source for food and shelter and, as a result, the more lichen in a forest, the more organisms the ecosystem can sustain. 

Humans have reaped the benefits of lichen, too. We have used them for clothing, decorations, and food. They are also highly valued for their antibiotic properties. Today, we use them in toothpastes, salves, deodorants, and other products. So you can thank lichens for helping us stay clean and healthy!

Cup Lichen (Image by Jürgen from Pixabay)

A Climate Helper

Since the algae in lichen photosynthesize, lichens contribute to the important function of converting carbon dioxide in the atmosphere to oxygen. The fungus in lichen contribute to this function, too, by allowing algae to live in places they wouldn’t be able to on their own. By providing a form of shelter, the fungus gives an opportunity for more algae to exist and thrive, and that means we have more creatures sequestering carbon and stabilizing the climate.

Lichens also play a vital role in soil formation and development by helping to break down solid minerals like rock. This process creates pockets in the soil – perfect for larger organisms to thrive in. It also creates pathways for nutrients to sink deep into the Earth, where they will later benefit plants and other creatures. As we like to say at Bio4Climate, healthy soil makes for a healthy planet.

Last but not least, lichens give us an insight on the amount of pollution in their respective area. Lichens absorb everything around them – including air, nutrients, water, and pollutants. Scientists study lichens in order to understand the type of toxins present in the environment and their levels. This information gives us insights on the root causes of disease and environmental degradation. With that knowledge, we can address issues affecting human and wildlife communities – creating a cleaner environment for us all. 

That’s all for now, but I hope you’re lichen this series!
Tania


Tania graduated from Tufts University with a Master of Science in Animals and Public Policy. Her academic research projects focused on wildlife conservation efforts, and the impacts that human activities have on wild habitats. As a writer and activist, Tania emphasizes the connections between planet, human, and animal health. She is a co-founder of the podcast Closing the Gap, and works on outreach and communications for Sustainable Harvest International. She loves hiking, snorkeling, and advocating for social justice.


Sources:
https://www.deschuteslandtrust.org/news/blog/2016-blog-posts/five-fun-facts-about-lichen
https://www.fs.fed.us/wildflowers/beauty/lichens/about.shtml
https://www.woodlandtrust.org.uk/blog/2019/04/what-is-lichen-seven-types-of-lichen-found-on-trees/
https://digitalcommons.humboldt.edu/cgi/viewcontent.cgi?article=1078&context=ideafest