Featured Creature: Kingfisher

What creature often looks blue, but isn’t, is found on every continent but Antarctica, and inspired a train’s design?

Kingfishers! (Alcedinidae)

 Patagonian Ringed Kingfisher, Megaceryle torquata ssp. stellata
(Image Credit: Amelia Ryan via iNaturalist)

Kingfishers are kind of like snowflakes. They both float and fly through the air, and no two are really alike. It’s what I love so much about them. Each kingfisher presents characteristics unique to their own lifestyle. They make me think of people. Like kingfishers, we live almost everywhere on Earth and we’ve all adapted a little differently to our diverse environments. I hope as you get to know the kingfisher, you’ll start to feel a small connection to these birds as I have.

Kingfishers are bright, colorful birds with small bodies, large heads, and long bills. They’re highly adaptable to different climates and environmental conditions, making them present in a variety of habitats worldwide. Many call wetland environments like rivers, lakes, marshes, and mangroves home. Now, their name might lead you to think all kingfishers live near these bodies of water, but more than half the world’s species are found in forests, near only calm ponds or small streams. Others live high in mountains, in open woodlands, on tropical coral atolls, or have adapted to human-modified habitats like parks, gardens, and agricultural areas.

Even so, you’re most likely to spot them in the tropical regions of Africa, Asia, and Oceania, but they can also be found in more temperate regions in Europe and the Americas. Some species have large populations and massive geographic ranges, like the Common Kingfisher (Alcedo atthis), pictured above, which resides from Ireland across Europe, North Africa and Asia, as far as the Solomon Islands in the Pacific. Other kingfishers (typically insular species that evolved on islands) have smaller ranges, like the Indigo-banded Kingfisher (Ceyx cyanopectus), which is only found in the Philippines.

Birds of a Feather

Kingfishers are small to medium sized birds averaging about 16-17 cm (a little over 6 inches) in length. They have compact bodies with short necks and legs, stubby tails and small feet, especially in comparison to their large heads and long, pointed bills. While many species are proportioned the same way, some are quite distinct. Paradise Kingfishers (Tanysiptera), which are found in the Maluku Islands and New Guinea like the one pictured below, are known for their long tail streamers. The African Dwarf Kingfisher (Ispidina lecontei) is the world’s smallest kingfisher at just 10 cm (barely 4 inches) long, and is found in Central and West Africa. The largest is the Laughing Kookaburra (Dacelo novaeguineae), coming in at a whopping 41-46 cm (15-18 inches) long, and is native to Australia.

Now, I know what you’re thinking: ‘Wait, are kookaburras and kingfishers the same thing? Sometime. Out of all 118 species, only four go by the name kookaburra: the Laughing Kookaburra (Dacelo novaeguineae), the Blue-winged Kookaburra (Dacelo leachii), the Spangled Kookaburra (Dacelo tyro), and the Rufous-bellied Kookaburra (Dacelo gaudichaud). Native to Australia and New Guinea, the kookaburra are named for their loud and distinctive call that sounds like laughter. Sometimes their cackles can even be mistaken for monkeys!

So,  are they as colorful as everyone says?

Yes! If you ask anyone who has seen a kingfisher to describe what it looks like, they will most likely go on and on about its color. Kingfishers are bright and vividly colored in green, blue, red, orange, and white feathers, and depending on the species, can be marked by a single, bold stripe of color. These features all accent the bird’s most recognizable feature, which is the blue plumage on their wings, back, and head. But here’s where things get interesting: Kingfishers don’t actually have any blue pigment in their feathers.

So, what gives? It’s something called the Tyndall effect. What’s happening is that tiny, microscopic keratin deposits on the birds’ feathers (yes, the same keratin that’s in your hair and nails) scatter light in such a way that short wavelengths of light, like (you guessed it) blue, bounce off the surface while all others are absorbed into the feather.

It sounds a little strange, but you see it every day. It’s why we see the sky as blue, too.

Azure Kingfisher, Ceyx azureus (Image Credit: David White via iNaturalist)

Are kingfishers Really Kings of Fishing?

Yes! And no. Kingfisher species are split into three subfamilies based on their feeding habits and habitats: the Tree Kingfishers (Halcyoninae), the River Kingfishers (Alcedininae), and the Water Kingfishers (Cerylinae). Despite their name, many of these birds primarily prefer insects, taking their prey from the air, the foliage, and the ground. They also eat reptiles (like skinks and snakes), amphibians, mollusks, non-insect arthropods (like crabs, spiders, scorpions, centipedes, and millipedes), and even small mammals like mice.

Tree Kingfishers reside in forests and open woodlands, hunting on the ground for small vertebrates and invertebrates. River Kingfishers are more often found eating fish and insects in forest and freshwater habitats. Water Kingfishers, the birds found near lakes, marshes, and other still bodies of water, are the fishing pros, specialize in catching and eating fish, and are actually the smallest subfamily of kingfishers, with only nine species.

Because the diets of kingfishers vary, so does the size and shape of their bills. Even though all species have long, dagger-like bills for the purpose of catching and holding prey, those of fishing species are longer and more compressed while ground feeders have shorter and broader bills that help them dig to find prey. The Shovel-billed Kookaburra (Clytoceyx rex) has the most atypical bill because it uses it to plow through the earth looking for lizards, grubs, snails, and earthworms. 

Shovel-billed Kookaburra, (Clytoceyx rex) 
(Image Credit: Mehd Halaouate via iNaturalist)

Can the blue-but-not-really-blue kingfisher get any more interesting? 

Oh yes, yes it can. Ready for another physics lesson? Kingfishers have excellent binocular vision, which means they’re able to see with both eyes simultaneously to create a single three-dimensional image, like humans. Not only that, but they can see in color too! But what makes them so adept at catching fish is their capability to compensate for the refraction of light off water.

When light travels from one material into another (in this case, air into water), that light will refract, or bend, because the densities of air and water are different. This makes objects look as though they are slightly displaced when viewed through the water surface. Kingfishers are not only able to compensate for that optical illusion while hunting, but they also can accurately judge the depth of their prey as well. 

But, triangulating underwater prey is only half the battle. Then you’ve got to catch it.

Fishing species of kingfishers dive no more than 25 cm (10 inches) into the water, anticipating the movements of their prey up until impact. Again, what happens next differs depending on which kingfisher we’re talking about. Many have translucent nictitating membranes that slide across their eyes just before impact to protect them while maintaining limited vision. Others, like the Pied Kingfisher (Ceryle rudis leucomelanurus), actually have a more robust bony plate that slides out across its eye when it hits the water—giving greater protection while sacrificing vision.

Pied Kingfisher in action

Kingfishers usually hunt from an exposed vantage point, diving rapidly into the water to snatch prey and return to their perch. If the prey is large (or still alive), kingfishers will kill it by beating it against the perch, dislodging and breaking protective spines and bones and removing legs and wings of insects. The Ruddy Kingfisher (Halcyon coromanda) native to south and southeast Asia, removes land snails from their shells by smashing them against stones on the forest floor.

Learning from kingfishers

Occupying a place fairly high in their environments’ pecking orders (trophic level) makes kingfishers susceptible to effects of bioaccumulation, or the increasing concentration of pollutants found in living things as you climb the food chain. This phenomenon, coupled with the kingfisher’s sensitivity to toxins, makes the bird a fairly reliable environmental indicator of ecosystem health. If a kingfisher population is strong, that can indicate their habitat is healthy because the small aquatic animals they feed on aren’t intaking poisons or pollutants. When problems are detected in a kingfisher population, it can serve as an early warning system that something more systemic is wrong.

But that’s not the only thing we can, or have learned, from kingfishers. In 1989, Japan was looking for a way to redesign its Shinkansen Bullet Train to make it both faster and quieter. As the train flew through tunnels at 275 km/h, massive amounts of pressure would build up, reigned in by the front of the train and the tunnels’ walls. Upon exiting the tunnels, that pressure would release, sending roaring booms through the homes of those living nearby. Engineer Eiji Nakatsu was not only the project’s lead, but birdwatcher as well. Noting the kingfisher’s ability to plunge into dense water at incredible speeds with hardly a splash, Nakatsu and his team remodeled the front of the train with the bird’s beak in mind. The result not only solved the problem of the boom, but also allowed the train to travel faster while using less energy.

Kingfishers: A Little More Like You Than You Think

In learning  about the kingfisher, I saw a little bit of us. We all come from the same family, even if we each do things a little differently.  I think for me, this gets to the root of why finding our connections with all living things matters, not just because they give us inspiration to solve human problems or because we depend on them to keep natural systems in balance, but because this is just as much their Earth as ours. 

Let’s do our part,

Abigail


Abigail Gipson is an environmental advocate with a bachelor’s degree in humanitarian studies from Fordham University. Working to protect the natural world and its inhabitants, Abigail is specifically interested in environmental protection, ecosystem-based adaptation, and the intersection of climate change with human rights and animal welfare. She loves autumn, reading, and gardening.


Sources and Further Reading:

Featured Creature: Strangler Fig

What creature grows backwards and can swallow a tree whole?

The strangler fig!

A strangler fig in Mossman Gorge, Queensland. (Image by author).

A Fig Grows in Manhattan

I recently wrapped a fig tree for the winter. Nestled in the back of a community garden, in the heart of New York City, I was one of many who flocked not for its fruit but for its barren limbs. An Italian cultivar, and therefore unfit to withstand east coast winters, this fig depends on a bundle of insulation to survive the season. The tree grows in Elizabeth Street Garden, a space that serves the community in innumerable ways, including as a source of ecological awareness.

Wrapping the fig was no small task. With frozen fingers we tied twigs together with twine, like bows on presents. Strangers held branches for one another to fasten, and together we contained the fig’s unwieldy body into clusters. Neighbors exchanged introductions and experienced volunteers advised the novice, including me. Though I’d spent countless hours in the garden, this was my first fig wrapping. My arms trembled as the tree resisted each bind. Guiding the branches together without snapping them was a delicate balance. But caring for our fig felt good and I like to think that after several springs in the sunlight it understood our efforts. Eventually, we wrapped each cluster with burlap, stuffed them with straw and tied them off again. In the end, the tree resembled a different creature entirely.

Growing Down

Two springs earlier, I was wrapped up with another fig. I was in Australia for a semester, studying at the University of Melbourne, and had traveled with friends to the northeast coast of Queensland to see the Great Barrier Reef. It was there that I fell in love with the oldest tropical rainforest in the world, the Daintree Rainforest. 

The fig I found there was monumental. Its roots spread across the forest floor like a junkyard of mangled metal beams that seemed to never end. They climbed and twisted their way around an older tree, reaching over the canopy where they encased it entirely.

The strangler fig begins its life at the top of the forest, often from a seed dropped by a bird into the notch of another tree. From there it absorbs an abundance of light inaccessible to the forest’s understory and sends its roots crawling down its support tree in search of fertile ground. Quickly then, the strangler fig grows, fueled by an unstoppable combination of sunlight, moisture, and nutrients from the soil. Sometimes, in this process, the fig consumes and strangles its support tree to death, hence its name. Other times, the fig can actually act as a brace or shield, protecting the support tree from storms and other damage. Even as they may overtake one tree, strangler figs also give new life to the forest.

As many as one million figs can come from a single tree. It is these figs that attract the animals who disperse both their seeds and the seeds of thousands of other plant species. With more than 750 species of Ficus feeding more than 1,200 distinct species of birds and mammals, the fig is a keystone resource of the tropical rainforest —the ecological community depends upon its presence and without it, the habitat’s biodiversity is at risk.

Fig-Wasp Pollination

Like the strangler fig, its pollination story is also one of sacrifice. Each fig species is uniquely pollinated by one, or in some cases a few, corresponding species of wasp. While figs are commonly thought of as fruit, they are technically capsules of many tiny flowers turned inward, also known as a syconium. This is where their pollination begins. The life of a female fig wasp essentially starts when she exits the fig from which she was born to reproduce inside of another. Each Ficus species depends upon one or two unique species of wasps, and she must find a fig of both the right species and perfect stage of development. Upon finding the perfect fig, the female wasp enters through a tiny hole at the top of the syconium, losing her wings and antennae in the process. She will not need them again, on a one way journey to lay her eggs and die. The male wasps make a similar sacrifice. The first to hatch, they are wingless, only intended to mate with the females and chew out an exit before dying. The females, loaded with eggs and pollen, emerge from the fig and continue the cycle.

The life cycle of the fig wasp.
(U.S. Forest Service, Illustration by Simon van Noort, Iziko Museum of Cape Town) 

The mutualistic relationship between the fig and its wasp is critical to its role as a keystone resource. As each wasp must reproduce additional fig species in the forest at different stages of development, there remains a constant supply of figs for the rainforest.

However, climate change threatens these wasps and their figs. Studies have shown that in higher temperatures, fig wasps live shorter lives which makes it more difficult for them to travel the long distances needed to reach the trees they pollinate. One study found that the suboptimal temperatures even shifted the competitive balance to favor non-pollinating wasps rather than the typically dominant pollinators. 

Another critical threat to figs across the globe is deforestation, in its destruction of habitat and exacerbation of climate change. In Australia, this threat looms large. Is it the only developed nation listed in a 2021 World Wildlife Fund study on deforestation hotspots, with Queensland as the epicenter of forest loss. Further, a study published earlier this year in Conservation Biology concluded that in failing to comply with environmental law, Australia has fallen short on international deforestation commitments. Fortunately, the strangler figs I fell in love with in the Daintree are protected as part of a UNESCO World Heritage Site in 1988 and Indigenous Protected Area in 2013.

Stewards of the Rainforest

The Daintree Rainforest has been home to the Eastern Kuku Yalanji people for more than 50,000 years. Aboriginal Australians with a deep cultural and spiritual connection to the land, the Eastern Kuku Yalanji have been fighting to reclaim their ancestral territory since European colonization in the 18th century. Only in 2021 did the Australian government formally return more than 160,000 hectares to the land’s original custodians. The Queensland government and the Eastern Kuku Yalanji now jointly manage the Daintree, Ngalba Bulal, Kalkajaka, and Hope Islands parks with the intention for the Eastern Kuku Yalanji to eventually be the sole stewards. 

Rooted in an understanding of the land as kin, the Eastern Kuku Yalanji people are collaborating with environmental charities like Rainforest Rescue and Climate Force to repair what’s been lost, reforesting hundreds of acres and creating a wildlife corridor between the Daintree Rainforest and the Great Barrier Reef. The corridor aims to regenerate a portion of the rainforest that was cleared in the 1950s for agriculture.

Upon returning to Cairns from the rainforest, we set sail and marveled at the Great Barrier Reef. My memories of the Daintree’s deep greens mingled with the underwater rainbow of the reef. At the Cairns Art Gallery the next day, a solo exhibition of artist Maharlina Gorospe-Lockie’s work, Once Was, visualized this amalgamation of colors in my mind. Gorospe-Lockie’s imagined tropical coastal landscapes draw from her work on coastal zone management in the Philippines and challenge viewers to consider the changes in our natural environment.

Maharlina Gorospe-Lockie, Everything Will Be Fine #1 2023
From the solo exhibition Once Was at the Cairns Art Gallery. (photo by author).

On the final day wrapping our fig in New York, I lean on a ladder above the canopy of our community garden and in the understory of the urban jungle. Visitors filter in and out, often stopping to ask what we’re up to. Some offer condolences for the garden and our beloved fig, at risk of eviction in February. We share stories of the burlap tree and look forward to the day we unwrap its branches.

The parallel lives of these figs cross paths only in my mind, and now yours. Perhaps also in the fig on your plate or the tree soon to be planted around the corner.


Jane Olsen is a writer committed to climate justice. Born and raised in New York City, she is driven to make cities more livable, green and just. She is also passionate about the power of storytelling to evoke change and build community. This fuels her love for writing, as does a desire to convey and inspire biophilia. Jane earned her BA in English with a Creative Writing concentration and a minor in Government and Legal Studies from Bowdoin College.


Sources and Further Reading: