Featured Creature: Slow Loris

What creature has large eyes, dexterous feet, and is the only venomous primate known to exist?? 

The slow loris (Nycticebus)!

Image Credit: Helena Snyder (CC BY-SA 3.0 via Wikimedia Commons)

Sometimes the smallest creatures hide the largest secrets/mysteries. At just about 10 inches long and weighing up to 2 pounds, the slow loris is, in my opinion, no exception. This small, tailless primate with large (and iconic) moon-like eyes inhabits rainforests. As omnivores, slow lorises feed on both fruit and insects. There are nine species total, all inhabiting the Southeast region of Asia ranging from the islands of Java and Borneo to Vietnam and China.

True to their name, slow lorises are not light on their feet and move slowly. Despite this, slow lorises are not related to sloths, but are instead more closely related to lemurs. But in the rainforest, that’s not such a bad thing. Their leisurely, creeping gait helps them conserve energy and ambush their insect prey without being detected.

Adaptations

Living in the dense, verdant rainforest isn’t for everyone.The jungle is riddled with serpentine vines, thick vegetation, and towering trees. But slow lorises have developed multiple adaptations that allow them to thrive in such an environment. 

  Their fur markings serve as a warning to other animals that they are not to be trifled with. This is known as aposematic colouration. Similar to skunks, contrasting fur colors and shapes signal that they are venomous which makes predators think twice about attacking. 

Slow lorises are nocturnal, and those large eyes allow them to significantly dilate their pupils, letting in more light and allowing them to easily see in near total darkness.

Even eating is no small feat in the rainforest. Slow lorises have specialized bottom front teeth, called a toothcomb. The grouping of long, thin teeth acts like a hair comb, allowing the slow loris to strip strong bark and uncover nutritious tree gum or sap. Equipped with an impressively strong grip, they can hang upside down and use their dexterous feet to hold onto branches while reaching for fruit just out of reach for most other animals. A network of capillaries called retia mirabilia allows them to do this without losing feeling in their limbs. With these adaptations, slow lorises are ideally suited for a life among the trees.

       Image Credit: David Haring (CC BY-SA 3.0 via Wikimedia Commons)

Venemous Primate

Slow lorises are the only venomous primate on Earth. They have brachial glands located in the crook of their elbow that secrete a toxic oil. When deploying the toxin, they lick this gland to venomize their saliva for a potent bite. And no one is safe– slow lorises use this venom on predators, and even each other. Fiercely territorial, they are one of the few species known to use venom on their own kind. In studying this behavior, scientists have found many slow lorises, especially young males, to have bite wounds.

The venom can be used as a protective, preventative defense mechanism as well. Female slow lorises have been observed licking their young to cover them in toxic saliva in hopes of deterring predators while they leave their babies in the safety of a tree to forage.

Whether you’re a natural predator, human, or another slow loris, a bite is very painful. Humans will experience pain from the strong bite, then a tingling sensation, followed by extreme swelling of the face and the start of anaphylactic shock. It can be fatal if not treated in time with epinephrine.

Image Credit: Helena Snyder (CC BY-SA 3.0 via Wikimedia Commons)

Bridging Human-Animal Conflicts

There are two major threats to slow loris populations – the illegal pet trade and habitat destruction. Because of their unique cuteness, soft fur, and small size, these creatures are often sold as illegal pets. Poachers will use flashlights to stun and capture the nocturnal slow loris, clip or remove their teeth  to avoid harmful bites to humans and, because of their endearing, teddy bear-like appearance, sell them off as pets. Slow lorises are nocturnal and not able to withstand the stress of being forced to be awake during the daytime. They are also often not fed a proper diet of fruit, tree sap, and insects which leads to nutritional deficiencies and poor health.


Habitat loss from agricultural expansion is another threat. As farms grow, slow loris habitat shrinks. Land cleared to plant crops encroaches upon the rainforest which results in less territory and food sources for the slow loris.

However, one scientist found a way to reduce the canopy-loss from farming and restore slow loris territory. After observing wild slow lorises using above-ground water pipes to traverse farmland, researcher Anna Nekaris had an idea. Through her organization, the Little Fireface Project, she worked with local farmers to add more water pipes to act as bridges for slow lorises to use to move about the area. These unnatural vines provided a highway connecting isolated spots of jungle to each other. Not only did the slow loris population benefit by gaining more arboreal access to trees and food sources, but the community also benefited. Nekaris worked with the farmers to provide more water pipes to their land while showing human-animal conflict can have a mutually beneficial solution.

Image Credit: Jefri Tarigan (CC BY-SA 4.0 via Wikimedia Commons)

Conservation

Every species of slow lorises is threatened, according to the IUCN, which monitors wild populations. Slow lorises may seem like an odd and somewhat unimportant creature on the grand ecological scale, but they are very important pollinators. When feeding on flowers, sap, or fruit, they are integral in spreading pollen and seeds across the forest. Through foraging and dispersal, slow lorises maintain the health of the ecosystem’s flora. 

The slow loris garners attention for its cute looks, but beneath its fuzzy face and moon-like eyes, is a creature connected to the/its environment. Slow lorises are a perfect example of how species are tethered to their habitat in an integral way – their existence directly impacts forest propagation. As a pollinator, they disperse pollen stuck on their fur to new areas and increase genetic diversity throughout the forest. Slow lorises are proof of Earth’s interconnectedness. 

To see the slow loris in action climbing from tree to tree and foraging for food, watch this short video.

Climbing up and away for now,
Joely


Joely Hart is a wildlife enthusiast writing to inspire curiosity about Earth’s creatures. She holds a Bachelor’s degree in creative writing from the University of Central Florida and has a special interest in obscure, lesser-known species.


Sources and Further Reading:

Articles

Scientific Papers

Featured Creature: Leafcutter Bee

What creature carves out little pieces of tree leaves to build its nest inside hollow stems?

The Leafcutter Bee!

Bernhard Plank – SiLencer (CC BY-SA 3.0 via Wikimedia Commons)

Known scientifically as Megachile (genus), leafcutter bees account for 1,500 of the world’s 20,000 bee species. I first noticed the work of leafcutter bees in my own backyard two years ago. First, you notice the “leaf damage” of the leafcutter bee. 

Here is the “leaf damage” on a pin oak seedling. 

The leaf damage takes the form of neat little curves. I recognized these neat little curves from having perused Bees: An Identification and Native Plant Foraging Guide, by Heather Holm, an author whose work I highly recommend. 

In June of this year, I was fortunate enough to capture a leafcutter bee on video doing her work. I’ll show you the video below, but first … 

How can we coexist with critters who are “harming” our plants?

It is said, “If nothing is eating your garden, then your garden is not part of the ecosystem.” If you want your garden to be part of the ecosystem, then some of it will become food for other critters. Some of my leaves will become food for leafcutter bees. But then the leafcutter bees will pollinate my wildflowers and my vegetables, making it possible for them to bear seed and fruit. I am happy to make this trade-off, plus I want my garden to feed all of the living species, not just us humans.

How do leafcutter bees differ from honeybees?

Honeybees are the most famous bees. And who doesn’t like honey? But honeybees are only one species out of 20,000 worldwide.  

Honeybees are social. So they live cooperatively in hives. But most bees are solitary, including leafcutter bees. They interact only in mating. And then they make their nests and lay their eggs in a nest that could be in the ground, or in a rotting tree or in the hollow stem of a dead wildflower.

The North American continent is home to 150 of the world’s 1,500 species of leafcutter bees. Honeybees originate from Europe; they are not native to North America. 

An “unarmed leafcutting bee” from my backyard

Here is a video of an “unarmed leafcutter bee” in my backyard, cutting the leaf off a pin oak seedling. This female uses her strong mandibles (jaws) to carve out a piece of a pin oak leaf to build her nest. Notice how quickly and efficiently she does this work.

How do I know this is a female? Because only the females build nests. The males die shortly after mating. 

As soon as she is done cutting off the piece of leaf, she carries it back to the nest. The female nibbles the edges of the leaves so they’ll be pulpy and stick together to provide the structure for the nest.

Where is she building a nest? 

She may build her nest in the hollow stem of a dead wildflower stalk, such as ironweed or goldenrod. She may build her nest in a dead tree. (Forest ecologists say that a dead tree is at least as valuable as a live tree, because so many critters make their nests in them.) Or she may build it in the ground. Nests also include cavities in rocks and abandoned mud dauber nests (Holm, 2017).

Here is the nest of a ground-nesting bee. In this case, it may or may not be a leafcutter bee.

If we leave bare spots on the ground, then this becomes a potential nesting site for ground nesting bees, including some leafcutter bees.

What purposes do the leaves serve?

Leaves prevent desiccation (drying out) of the food supply. The leaves typically include antimicrobial properties, preventing the nest from being infected.

Inside a nest, cells are arranged in a single long column. The female constructs each cell with leaf pieces, placing an egg along with pollen mixed with nectar, enough food for the bee to grow to adulthood, before leaving the nest.

In the fall, the larvae hatches from the egg, eats the nectar and pollen, and gains enough energy to grow through several stages, called instars. But it does not yet leave the nest. In the spring, the larvae pupates and becomes an adult, finally crawling out of the nest.

In the eastern U.S., common nesting materials include rose, ash, redbud and St. John’s wort. See below for photos from my home landscape showing the work of leafcutter bees on my pin oak, silver maple and jewelweed.

Where do leafcutter bees gather pollen and nectar?

Heather Holm, author of Bees: An Identification and Native Plant Foraging Guide, lists the following forage plants where leafcutter bees gather nectar and pollen:

Spring Forage Plants: 

  • Golden Alexander (Zizia aurea)
  • Purple coneflower (Echinacea purpurea)
  • Foxglove beardtongue (Penstemon digitalis)

Summer Forage Plants: 

  • Black-eyed Susan (Rudbeckia hirta)
  • Common milkweed (Asclepias syriaca)
  • Butterfly weed (Asclepias tuberosa)
  • Joe Pye weed (Eutrochium purpureum)
  • Anise hyssop (Agastache foeniculum)
  • Blazingstar (Liatris pycnostachya)
  • Blue vervain (Verbena hastata)

Autumn Forage Plants: 

  • Goldenrod, species of Solidago, including showy goldenrod (Solidago speciosa)
  • Asters, i.e., species of Symphyotricum, including New England aster, (Symphyotricum novae-angliae)
Here is a picture of Megachile fidelis, the faithful leafcutting bee, gathering nectar and pollen from a New England aster.
Joseph Rojas – iNaturalist (CC BY 4.0 via Wikimedia Commons)

Specialist Leafcutter Bees

Some leafcutter bees specialize on the aster family of plants, known as Asteraceae. So we can support these bees around our home landscape by cultivating any representatives of the Asteraceae family, including goldenrod, sunflowers, ironweed and wingstem.

Check out this video of a female leafcutter bee carving out a leaf piece from a China Rose.

More leafcutting from leafcutter bees in my backyard

Here is evidence that a leafcutter bee was carving off pieces of a silver maple leaf (left). Here, leafcutter bees have been working on a jewelweed plant (right).

The following are photos of flowers from my home landscape, all of which make excellent forage for pollinators, including leafcutter bees.

Purple coneflower
(Echinacea purpurea)
Cutleaf coneflower
(Rudbeckia laciniata)
Blunt Mountain Mint (Pycnanthemum muticum)
False Sunflower
(Heliopsis Helianthoides)
Cup plant
(Silphium perfoliatum)
Butterfly weed
(Asclepias tuberosa)
Brown-Eyed Susan
(Rudbeckia hirta)

This is my front yard garden from 2022. 

Included here are four great forage plants: Maximilian sunflower (Helianthus maximiliani), white crownbeard (Verbesina virginica), frost aster (Symphyiotricum pilosum) and New England aster (Symphiotricum novae-angliae)

Grow your garden and grow an ecosystem. Cultivate a diversity of native plants and avoid pesticides.

—Hart


Hart Hagan is a Climate Reporter based in Louisville, KY. He reports on his YouTube channel and Substack column. He teaches a course for Biodiversity for a Livable Climate called Healing Our Land & Our Climate. You can check it out and sign up for a class here.


Photos by Hart Hagan, except where noted.

Sources and Further Reading:

Featured Creature: Northern Cardinal

What instantly recognizable songbird holds seven state titles and has the crown to prove it?

The Northern Cardinal!

Image by Jack Bulmer on Pixabay

The iconic red plumage of the Northern Cardinal is a staple of backyard gardens across the Eastern United States and Mexico, and is a rare example of a species thriving amidst the expansion of the built environment. While Cardinalis cardinalis is a marker of springtime in New England, these non-migratory birds make permanent homes in open woodlands, thickets, and backyards, their striking red feathers bringing a welcome burst of color to the white backdrop of northern winters. 

When March rolls around, starting the cardinal breeding season, you’ll begin to hear the mating calls of female birds. Some of the most vocal songbirds around, the Northern Cardinal has a wide variety of chirps, whistles, calls, and songs – even duets unique to mated pairs –  that serve a range of purposes. Their vocal acrobatics and flashy appearance have made them a favorite among birders and state governments alike. The Northern Cardinal is the state bird of Illinois, Indiana, Kentucky, North Carolina, Ohio, Virginia, and West Virginia – the nation’s most popular choice with 7 state titles.

Hard to miss

Cardinals were originally named for the male bird’s resemblance to the bright red robes and caps of the cardinals of the Roman Catholic Church. In 1983, the “Northern” qualifier was added to differentiate the bird from its Southern cousins, including species like the Yellow Cardinal. Male Northern Cardinals possess those iconic red feathers, while the female is less flamboyant: brown in color with a reddish tint that is most noticeable while in flight. The male’s vibrancy may be useful to attract a mate, but the more neutral brown of the female helps to camouflage the nest during the incubation of eggs and subsequent brooding of chicks. This results in a natural division of parenting duties.

Image by Arron Doucett on Unsplash

An eventful mating season

Mating calls announce the start of nesting season in early March, and the cardinals’ prolific musical repertoire can be heard through late August or September. Northern cardinals select one mate for the extent of the breeding season and divide up the parenting responsibilities. With the red of the males easily spotted by predators, only the females sit on the nest. The males are resigned to foraging, allowed back to the nest only when a chirp from the female signals the coast is clear. 

Cardinal chicks feed primarily on nutrient-rich insects until they leave the nest 10 days after hatching. After the chicks fledge, or grow their flight feathers, the parents continue to feed the young birds for another month or more, transitioning them to a granivorous diet consisting of seeds and grain – easily shelled by their conical, orange beaks – with the occasional berry or insect. Around June, the cardinal parents are free to start their next brood. Northern cardinals often raise two rounds of chicks, ranging from 1-3 eggs per nest for a total of 3-5 eggs per season. Territories are fiercely defended by males, who are often seen attacking their own reflection in windows and mirrors. You can’t be too careful!

When the mating season winds down in late summer, it is not uncommon to spot the occasional bald cardinal, but don’t worry, the birds aren’t sick! Cardinals usually replace their crest feathers gradually throughout the summer, but sometimes they’re all molted at once, exposing their dark skin. The effect is only temporary, with their notable crest growing back in a matter of weeks.

Image by Ryan Pagois (Eagan, MN)

A well-adapted species

While most species around the world are confronting immense challenges and population declines as a result of urbanization and global warming, the range and population of Northern Cardinals is actually increasing. The growth of suburbs has increased their nesting habitat, as the birds favor the thick branches of bushes and shrubs, common in woodland edges and backyard gardens. Their expansion has been aided by the presence of birdfeeders, providing cardinals with an easy food source in urban areas that give them an advantage over most native bird species. (Sunflower seeds are a cardinal’s preferred snack, for anyone looking to attract these beautiful birds.)

Cardinals may be more protected in urban areas with an absence of larger predators, but they still play a role in their local ecosystems. They serve as seed-dispersers as they forage for food, and can become a meal for the occasional predator. Domestic cats and dogs do pose a threat to them, as do hawks and owls, while small snakes, squirrels, chipmunks, and blue jays tend to go after cardinal eggs. However, cardinals have proved exceptionally adaptable in the age of human expansion. Their range has crept northward to Maine and southern Canada in the past 100 years as temperatures increase, with Northern Cardinals now numbering around 130 million. 

While not a species of concern, may we continue to pay attention to and take inspiration from the Northern Cardinal, a proven adapter to the Anthropocene and a gentle backyard reminder of the beautiful sights and sounds of the natural world.

With a spring in my step,
Ryan


Ryan Pagois is a climate advocate and systems thinker serving as an Associate Director at Built Environment Plus, helping to drive sustainable building solutions in MA. He is passionate about urban ecology, carbon balance, and rewilding cities. He is excited to pursue a Masters of Ecological Design at the Conway School starting this fall, to explore how low-impact urban development can be our greatest climate solution and community resilience tool. He grew up in Minnesota and studied environmental policy and international relations at Boston University.


Sources and Further Reading:
https://www.allaboutbirds.org/guide/Northern_Cardinal/lifehistory#conservation
https://www.audubon.org/field-guide/bird/northern-cardinal
https://www.birdsandblooms.com/birding/state-birds-facts/
http://www.biokids.umich.edu/critters/Cardinalis_cardinalis/
https://www.audubon.org/news/10-fun-facts-about-northern-cardinal

Featured Creature: Black Drongo

What small but fearless songbird can astonish with its aerial acrobatics and is always ready to battle much bigger birds for dominance?

The Black Drongo!

A songbird with fearless attitude, the black drongo, or Dicrurus macrocercus, can be found across Southeast Asia. I first encountered this amazing avian when visiting India, where drongos could be seen across the treetops of Delhi and Kolkata. Their variety of calls and distinctive two-pronged tail caught my attention, and the more I learned about these creatures, the more I came to respect their cleverness and adaptability. 

Some consider drongos to be a symbol of good fortune. This may be related to their ecological role controlling the population of certain insects that can prove to be major pests in agricultural areas. Whether due to their beauty, their singing talents, or contributions to ecological balance, black drongos’ deserve our respect and high regard.

Photo by Vinoth Chandar (CC BY 2.0, via Wikimedia Commons)

Strength in numbers

One of the most amazing characteristics of these songbirds is their brazen behavior. Though they have an average size of about 11 inches (or 28 cm), black drongos don’t shy away from conflict with much bigger neighbors. 

During nesting season, when birds of prey pose a threat to drongos’ nests, drongos have been known to band together and fight back. They employ the technique of ‘mobbing’ the predators, gathering in numbers to harass the threat and drive it out of the area. In certain cases, drongos have taken to this behavior year-round, preemptively “cleaning up the neighborhood” before bigger birds have a chance to locate and disrupt their nests. 

Naturally, other small birds have come to appreciate this service, and species like bulbuls, orioles, doves, and pigeons tend to nest near drongos to enjoy their protection. One beautiful display of mutualism has been recorded in which a red-vented bulbul fed the chicks of a black drongo. Talk about community building!

As drongos’ forked tails may suggest, these birds are built to be incredibly aerodynamic. They often dart through the air in pursuit of their insect prey, and have been observed on daring escapades through fiery skies, as farmers using seasonal burns on their agricultural fields cause insects in those habitats to flee. The drongos happily browse the feast in these dramatic events, and in general they’re not too picky about how they get their meal. 

Black drongos will fly near tree branches to disturb insects and pick them off, or forage for grubs and caterpillars on the ground. They’ll eat cicadas, grasshoppers, ants, wasps, beetles, dragonflies, and more insects, and will even occasionally consume bigger prey like small birds, reptiles, bats, and fish. Living along forest edges, farmland, meadows, wetlands, and fields, black drongos benefit by having a wide diet that can suit their circumstances.

Photo by Maya Dutta

Clever callers

In addition to their flying skills, drongos use their vocal talents to rustle up a good meal. These birds are far from one-note. They have tremendous range in the calls they produce, and have become quite adept in the art of mimicry. Drongos sometimes sound alarms, causing other creatures to flee and abandon their food, leaving it up for grabs.  

Fork-tailed drongos (the black drongo’s African cousins) have been observed tricking meerkats in this way, and you can watch their wily ways on BBC Earth:

Black drongos of Asia do the same, imitating the call of the shikra (a small raptor) to scare myna birds away from their meals, and swooping in to enjoy the spoils. Perhaps they aren’t the best neighbors after all… 

Drongos’ variety of calls shows just how complex their communication can be. In order to mate, nest, forage, feed, mob, and play, the drongo requires a wide vocabulary, and while its most common sound is a two note ‘tee-hee’, drongos are capable of many more songs and sounds to express themselves. Listen in here:

Drongos demonstrate how using your voice and your talents cleverly can help you adapt to any number of circumstances. On that note, I’ll fly off now!

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources:
https://www.tribuneindia.com/news/schools/drongo-the-kotwal-among-birds-190571
https://jlrexplore.com/explore/focus/drongos-of-karnataka
https://en.wikipedia.org/wiki/Black_drongo
https://ebird.org/species/bladro1

Featured Creature: Luna Moths

What nocturnal creatures native to North America are known for their beauty and the fact that they don’t eat at all in their adult life? 

Luna moths!

Photo by Geoff Gallice, CC BY 2.0, via Wikimedia Commons 

As the movement to restore native biodiversity grows, we are seeing trends like No-Mow May, Leave the Leaves, and pollinator-friendly gardens gain popularity as ways to support the intricate web of biodiversity. Often, part of the campaign for preserving and nurturing these essential soil-plant-insect-animal interactions involves highlighting some of the charismatic creatures who stand to benefit from rewilding efforts. If you are looking for a creature to champion in the work for native biodiversity, look no further than the Luna Moth! 

Photo by Naturelady from Pixabay

When I was little I used to think the woods were magic. I read Enid Blyton’s The Magic Faraway Tree and imagined what fantastical creatures I might meet if I got to wander through the forest. For the most part, my adventures were confined to chasing fireflies in New York City parks, but that was enough to convince me I was onto something. Those lucky enough to meet the tree-dwelling luna moth might agree, because these big bright fluttering beauties would fit right into any fantasy setting. 

The luna moth, or Actias luna, is a species of giant silk moth endemic to North America. It is known for its distinctive shape, green color, and shockingly long wingspan of up to 7 inches! In discussing the biodiversity we are fighting for by restoring landscapes and rewilding our built environment, the lovely luna moth has come up several times for the sheer wonder it brings people. Like a real-life tinkerbell, this intricate insect inspires us with its beauty and shows how much transformation a single individual can undergo in a lifetime. 

While many animals (and particularly insects), can challenge our human perspective of time with their fleeting life spans, the luna moth takes this to new extremes. Not only do adult luna moths live for just a week, but they have a very clear purpose in that time to mate and reproduce. They are so single-minded that they don’t undertake one of the other major activities of the natural world – eating! The luna moth emerges from its cocoon with all the energy needed to carry out its week of mature adult life.

Though it may be brief, the luna moth’s existence, from egg to adult stage, with all the growth and survival that entails, is anything but simple.

A lesson in metamorphosis

Like other moths and butterflies, luna moths undergo a dramatic transformation in their life cycle from their humble beginnings as eggs. After approximately 10 days, they hatch into their larval stage on the underside of the leaves where they were laid. Caterpillar larvae actually undergo several stages of molting in which they grow in size and change in appearance, sporting spots and changing color from a bright green to a darker yellow or orange. They cocoon themselves after several weeks as larvae, entering the pupal stage for 2-3 weeks before finally emerging as the beautiful moths we’ve come to recognize. 

With a name derived from the latin word for moon, these nocturnal creatures can be observed during the evening in late Spring or early Summer, depending on the region. While they range from Canada to Florida in areas east of the Great Plains, the timing and duration of their life cycles vary by location and climate. Indeed, Northern populations of luna moths have just one generation per year, while further South in warmer conditions, they’ve been known to have as many as three generations per year. 

Luna Moth caterpillar (Photo by Benny Mazur, CC BY 2.0 via Wikimedia Commons)

As caterpillars, luna moth larvae feast on the leaves of the trees they call home. They love several species of broadleaf trees, including walnut, hickory, sumac, and sweet gum. While they can be Very Hungry Caterpillars, voraciously consuming leaves to grow, populations of luna moths tend not to reach a density that starts to harm their host plants. Instead, they are a beautiful feature of the ecosystems of trees that they dwell in, and themselves become food for other species, including birds, bats, and some parasitic flies. 

Survival with a flourish

The adult luna moth uses a very special survival strategy to evade bats who are out hunting at night. While their green camouflage might keep them safe from predators relying on eyesight to hunt, they need to try something different to out-maneuver a bat’s echolocation. The long curved tails of the luna moth serve just this purpose. When under pressure from a bat’s pursuit, luna moths spin the frills at the end of their tails, disrupting the vibrations through the air that help the bats navigate and giving moths an essential boost in getting away. These beautiful features offer the moth both form and function.   

Luna moth near Tulsa, OK (Photo by woodleywonderworks, CC BY 2.0 via Wikimedia Commons)

The luna moth is a stunning example of the creativity, elegance, and transience of the natural world. While a single luna moth may not live very long, their impact persists across generations, inspiring naturalists young and old who are lucky enough to catch a glimpse. These creatures are one of many reasons to keep preserving and planting native trees. When we do, living wonders await. 

With that, I’ll flutter off for now!
Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources:
https://www.fllt.org/goddess-of-the-moon-the-life-history-of-the-luna-moth/
https://hgic.clemson.edu/factsheet/luna-moth/
https://en.wikipedia.org/wiki/Luna_moth
https://www.smithsonianmag.com/science-nature/luna-moths-gorgeous-wings-throw-bat-attacks-180954281/

Featured Creature: Wasps

What creature taught humans to make paper, builds with mud and can pollinate a flower inside a fruit?

Wasps!

Young paper wasp queen guarding her nest and eggs.
Alvesgaspar (CC BY-SA 3.0 via Wikimedia Commons)

When creatures possess a defense mechanism capable of hurting us (like a sting), we categorize them as ‘dangerous.’ When they look differently than we do, we categorize them as ‘strange,’ and when they get attracted to man-made cities or agricultural fields due to the buffet of food we lay out for them, we categorize them as a ‘nuisance.’ When it comes to wasps, we call them all the above. 

Whenever a creature has a negative reputation, people wonder, “Why do we even need them? Can’t we just get rid of them?” It’s a painful reminder of the Ego mindset, the one that sets us above other species. But if we take a moment to learn about other creatures, especially the ones we consider “pests,” we soon move towards an Eco mindset. We begin to realize that all species are important for balancing Earth’s ecosystems, and that each individual brings something unique and irreplaceable to this planet. When we embody the Eco mindset, we no longer see humans as dominant, but as equal participants in nature’s systems.

Wide Range

The term ‘wasps’ includes a variety of species that are generally separated by their behavior (and not all of them are yellow and black – in fact, only about 1% of wasps sport those colors). Social wasps, such as yellowjackets and hornets, live in colonies with hierarchies similar to bees and ants while solitary wasps, such as potter wasps, do not. Social wasps start a new colony every spring. Each colony begins with a queen, and she will raise a few worker wasps to enlarge the nest and bring food. Once the nest is spacious enough, the queen will lay eggs, and by the end of the summer there will be thousands of colony members. Throughout autumn, all wasps will perish except for a few new queens. Over the winter, this new set of royalty will find shelter in a fallen log or an abandoned burrow, and when spring returns they will venture out to create new colonies. 

A social wasp (Vespula germanica)
Alvesgaspar (CC BY-SA 3.0 via Wikimedia Commons)

Wonderful Architects

Wasps, unlike honeybees, cannot produce wax. To build nests, most species create a paper-like material out of wood pulp and shape the material into cells perfect for rearing. The manufacturing process involves gathering wood fibers from strips of bark, softening the wood by chewing and mixing it with saliva, and spitting it back out to form the cells. Some species, like Potter Wasps, prefer to design nests from mud.

Theory has it that 2,000 years ago, a Chinese official named Cai Lun invented our modern use of paper after watching wasps build a nest in his garden. So next time you read a book, write a note, or receive one of our letters in the mail, you can thank wasps for their ingenious skills!

Although many of us may not enjoy having a wasp nest in or near our home, it’s best to leave them alone when possible. Remember that a colony only lasts for a season, and once the wasps leave you can remove the remaining nest. If you need more convincing for leaving wasp nests intact, keep reading to learn how these creatures contribute to the environment.

Work-oriented

Despite the lack of recognition, wasps contribute to man-made gardens and agricultural fields by eating other ‘pests,’ or insects, that harm crops. Their wide-ranging diet and wide geographical range (they exist on every continent except Antarctica) means they contribute to human food sources worldwide. Wasps eat flies and grasshoppers, and will feed aphids to their growing larvae. Some also eat nectar, making them pollinators. Around the world, many farmers consider them essential for their food-production methods. When it comes to food security, we can thank wasps for looking after our crops.

Cuckoo Wasp (Chrysididae)
Vengolis (CC BY-SA 4.0 via Wikimedia Commons)

Well-balanced

I recently had my first fig, grown organically without any pesticides or chemical fertilizers, ever. It was delicious, and when I asked the manager of Sarvodaya Farm for another, we began to discuss the important role of wasps in fig reproduction.

Although figs are considered a fruit, they are actually an inverted flower. The fig blooms inside the pod, rather than outside, and so it relies on insect pollination to reproduce. It takes a special pollinator to crawl through a small opening and into the fig’s pod to bring the flower its much-needed pollen. Wasps like to lay their eggs in cavities, so they developed a mutually beneficial (or symbiotic) relationship with fig trees. Wasps get a home protected from predators to raise their young, and figs get to reproduce. 

Some species of wasps have developed a similar mutualistic relationship with orchids. The extinction of wasps would not only be detrimental for figs, orchids, and other plants that rely on insect eaters or pollinators, it would also be tragic for the many organisms that eat those plants (which, as a new fig fanatic, now includes me). 

My first fig ever, from Sarvodaya Farms, where I learned about the mutually beneficial relationship between figs and wasps

Warriors of disease

In case the invention of paper, crop protection, and pollination were still not enough to impress you, one species of wasp found in Brazil also produces a toxin in its venom that contains cancer-fighting properties. Even the substance that enables some wasps to kill larger prey contains healing properties. 

By writing about creatures a lot of people see as ‘pests,’ I hope to do my part in speaking against the way we view and treat other animals. I also hope these stories encourage you to take the time to learn from our non-human neighbors. Cai Lun demonstrated the incredible tools we can design when we look to nature for inspiration, a practice known as biomimicry. The solutions are all around us, but it’s up to us to be still, inquisitive, and open-minded, and to let nature show off her magic. 

Wishfully yours,

Tania


Tania graduated from Tufts University with a Master of Science in Animals and Public Policy. Her academic research projects focused on wildlife conservation efforts, and the impacts that human activities have on wild habitats. As a writer and activist, Tania emphasizes the connections between planet, human, and animal health. She is a co-founder of the podcast Closing the Gap, and works on outreach and communications for Sustainable Harvest International. She loves hiking, snorkeling, and advocating for social justice.


Featured Creature: Ladybug

Photo by Roberto Navarro on Unsplash

What tiny creature brings luck to farmers and other folks all over the globe?

The ladybug! 

Photo by Roberto Navarro on Unsplash

One Lucky Lady

Ladybugs, or beetles of the family Coccinellidae, are small, often colorful rounded insects beloved by children’s rhymes and gardeners alike. 

Ladybugs are thought to be a sign of luck in many cultures and urban myths. Whether it’s because of their cuteness or their supposed powers of good fortune, people often hold ladybugs as an exception to their aversion to insects. Perhaps the lovely ladybug can pave the way to a more widespread appreciation for insects and their importance in the web of life. 

There are a variety of superstitions or myths around ladybugs, as people of different cultures have developed different takes on what kind of luck this little critter brings. Some view ladybugs as portents of love, and say that the redder they are the more luck they bring. Others say that it’s the number of spots that count – predicting the number of years of good luck you’ll have, or the number of months until your greatest wish comes true, depending on whom you ask.

In Norway, it’s said that if two people catch sight of a ladybug at the same time, they will fall in love. Whether ladybugs are said to bring luck in love or in the year’s coming harvest, it’s widely believed that killing a ladybug confers bad luck, so steer clear!

Photo by Dustin Humes on Unsplash

Doing their part 

In all likelihood, ladybugs have become associated with luck because of the very real help they provide to farmers and growers. Ladybugs prey on aphids, mealybugs, and other insects that can damage crops by latching on and sapping them of their nutrients. While a number of artificial pesticides can be used to control such problems, these dangerous chemicals often have unintended consequences, harming not only the insects they target, but also killing beneficial insects, running off and seeping into groundwater, poisoning soil, and altering ecosystems. Ladybugs provide a natural alternative to chemical pesticides because they target the pests specifically, leaving plants, other insects and animals, and humans all unharmed. 

Ladybug larvae feast on aphids, mealybugs, and other soft-bodied insects, and can consume up to 50 aphids a day. They continue to maintain this diet in their pupal and adult forms, and may eat up to 5000 insects in a lifetime. Even through metamorphosis, some things never change! 

Check out this short video showing the life cycle of the ladybug:

A diverse family

Also known as “ladybirds” or “lady beetles”, ladybugs are found pretty much everywhere around the globe, and there are over 5000 different species of them. While ladybugs (at least here in the Northeast US) are famous for sporting a pattern of red shell with black spots, they can actually have a variety of colors and patterns. 

File from entomart.be

Their bright color and patterning signals to predators that they should stay away, or face a very disappointing meal. Indeed, when under threat, ladybugs release a distasteful fluid from their joints. As is often the case with many other familiar plants and animals, these insects are more than meets the eye. 

Ladybugs are a great example of a creature that is beloved for its contributions to its ecosystem, enabling plant life and complex networks of creatures to thrive. When we pay attention to the way other organisms help out in their own habitats, we come to realize that you don’t need luck when you have healthy ecosystems. By using natural means of pest control and working with other life forms to keep systems in balance, we can make our own good fortune. 

Fingers crossed,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources:
https://entomology.ca.uky.edu/ef105
https://kids.nationalgeographic.com/animals/invertebrates/facts/ladybug
https://organiccontrol.com/lady-bugs/

Featured Creature: Atlas Moth

What creature has no mouth, is known for colorful patterns, and is famous for mimicking a deadly predator?

The Atlas Moth!

Jee & Rani Nature Photography © 2018 (CC BY-SA 4.0 via Wikimedia Commons)

The insect with a reputation

Atlas moths live throughout India, China, Indonesia and Malaysia. This wide distribution covers secondary forests, shrublands, tropical areas, and rainforests. 

The name “Atlas” likely came from the moth’s vibrant, unique patterns that resemble geological formations shown on a map, or atlas. Another theory behind the name comes from Greek mythology. According to myth, Atlas was a Titan who was ordered by Zeus to hold the sky on his shoulders as punishment for rebelling against the gods. A big task like that requires a big titan, so “Atlas” Moth could refer to the large size of this creature. 

The Atlas moth is the largest moth due to its massive wing surface area. Females are larger than males, and they can measure up to 12 in, reaching a surface area of 62 in2 – that’s one huge moth!

The last theory behind the Atlas moth’s name is the Cantonese translation, which means “snake’s head moth,” and that refers to the distinct snake face shape on the tip of the moth’s wings. Can you see it?

The Atlas moth uses this snake head pattern to its advantage. If the moth feels threatened while in a resting position, it will quickly begin flapping its wings to mimic a moving snake head. I’m sure snakes must appreciate the Atlas moth’s methods. After all, mimicry is the sincerest form of flattery.

Max Burger ( Public Domain via Wikimedia Commons )

Gone Too Soon

Sadly, our beloved moth has a short lifespan. After emerging from their cocoons, they live for two weeks. This is just enough time to find a mate and reproduce. Atlas moths are so busy with these two tasks during that time period that they don’t even eat. They depend solely on the energy they stored during their caterpillar, or larva, stage. The moth has so evolved to this fasting lifestyle that it doesn’t even have a mouth! 

To get ready for the moth stage, atlas moth caterpillars will devour citrus fruits, cinnamon, guava, evergreen tree leaves and willow. The caterpillars have their own defense system, too. When threatened, they spray a potent, foul-smelling substance that can reach up to 50 cm. So don’t mess with these caterpillars!

Vinayaraj (CC BY-SA 4.0 via Wikimedia Commons)

How are human activities impacting Atlas Moths?

People throughout the countries the atlas moth lives in admire this creature. In India, their cocoons are used to create a silk called fagara. In Taiwan, local people collect the cocoons and create a variety of products. Purses are made by simply adding a zipper to nature’s design.

Although local communities have been practicing sustainable cocoon-harvesting practices for some time, throughout recent decades the moth itself has been targeted- to be sold alive as a pet, or dead as a display item. Perhaps we can learn from this moth by showing our admiration through mimicry, rather than taking them out of their natural habitat.

Wishfully yours,

Tania


Tania graduated from Tufts University with a Master of Science in Animals and Public Policy. Her academic research projects focused on wildlife conservation efforts, and the impacts that human activities have on wild habitats. As a writer and activist, Tania emphasizes the connections between planet, human, and animal health. She is a co-founder of the podcast Closing the Gap, and works on outreach and communications for Sustainable Harvest International. She loves hiking, snorkeling, and advocating for social justice.


Featured Creature: Dragonfly

Which creature existed before the dinosaurs, is an aerial genius, and can detect things we can only witness through slow-motion cameras?

The dragonfly!

Eugene Zelenko (CC BY-SA 4.0 via Wikimedia Commons)

Predecessors to the Dinosaurs

Dragonflies were some of the first winged insects to evolve, about 300 million years ago. When they first evolved, their wingspans measured up to two feet! In contrast, today’s dragonflies have wingspans of about two to five inches.

Although in this feature we speak of dragonflies in a general sense, there are more than 5,000 known species of them, each with its own characteristics. 

The Dramatic Entrance

Dragonflies begin as larvae. During this almost 2-year stage, they live in wetlands such as lakes or ponds across every continent except Antarctica. Despite their small size, their appetite is huge, and they are not picky eaters. In their larval to nymph stages, they will eat anything they can grasp including tadpoles, other insect larvae, small fish, mosquitos, and even other dragonfly larvae. 

After their nymph stage, dragonflies emerge as if they were reviving from the dead. They crawl out of the water, split open their body along their abdomen, and reveal their four wings- along with their new identity. Then, they spend hours to days drying themselves before they can take to the skies as the insects we know and love. 

Once a dragonfly is dry and ready to fly, their voracious appetite continues. As usual, they’ll eat almost anything, but now they will only eat what they catch mid-flight. These feasts consist of butterflies, moths, bees, mosquitoes, midges, and, yet again, even other dragonflies. They seem to embrace the motto “every fly for themself.”

Check out their dramatic transformation:

Engineered for Optimal Flight

Dragonflies emerge after their larval stage as masters of the air. Their four independently moving wings and their long, thin bodies help them maneuver the skies. They hunt and mate in mid-air and they can fly up to 60 miles per hour. They are also able to fly backwards, sideways, and every which way in a matter of seconds or less. 

This incredible ability requires excellent vision. (Or else we would likely see them crash much more often!) Thankfully, dragonflies have just the answer. Their head mostly consists of their eyes. Their multiple lenses allow them to see nearly everything around them, covering every angle except one: right behind them. The insect’s vision not only reaches far and wide, but allows them to see the world at faster speeds than we can.

How are human activities impacting dragonflies?

Since dragonflies consume a variety of organisms, and rely on healthy bodies of water to grow, they are considered important environmental indicators. In other words, when dragonfly populations plummet, conservationists have something to worry about. Nymphs and dragonflies will eat just about anything, so they will only go hungry if there is no available food. Looks like those big appetites came in handy after all. 

Declines in dragonfly populations also indicate water pollution and habitat loss. These are consequences of agricultural methods that favor chemicals and synthetic fertilizers, and forest management that disregards the importance of maintaining balance within an ecosystem. One solution is regenerative agriculture which ensures fewer toxins in our environment. 

Overall, the more green (and blue) space for wildlife, the more likely these iconic insects will thrive. 


Tania graduated from Tufts University with a Master of Science in Animals and Public Policy. Her academic research projects focused on wildlife conservation efforts, and the impacts that human activities have on wild habitats. As a writer and activist, Tania emphasizes the connections between planet, human, and animal health. She is a co-founder of the podcast Closing the Gap, and works on outreach and communications for Sustainable Harvest International. She loves hiking, snorkeling, and advocating for social justice.