Featured Creature: ‘Ōhi’a Lehua

What tree has adapted to grow directly in lava rock and is a keystone species of the Hawaiian watershed?

‘Ōhi’a Lehua (Metrosideros polymorpha)!

Image Credit: Kevin Faccenda via iNaturalist 

The first time I saw the vibrant blossoms of the ‘ōhi’a lehua tree, I was walking on a dirt path in Kauai’s Waimea Canyon State Park, gaping down at the most colorful red and green gorges I had ever seen. Needing a breather from the steep visual plunge, I looked up from the canyon and noticed bright red flowers on the side of the path. As I got closer and could see the plant more clearly, the first thought that popped into my head was how similar the flowers looked to those fiber optic light toys I had played with as a kid. (If you don’t know what fiber optic light toys look like, look them up. You’ll see exactly what I mean.) 

After my trip to Waimea Canyon, I saw ‘ōhi’a lehua everywhere. When I drove along the coast between the beach and the sloping mountains, when I hiked the volcanic craters of Haleakala, and when I visited parks and gardens across the islands that protect native plants and animals. ‘Ōhi’a lehua is the most common native tree in Hawaii, so seeing its fiery red, orange, or yellow blossoms every day felt so very ordinary. But ‘ōhi’a lehua is far from ordinary.

Let Me Introduce You to My New Friend, ‘Ōhia Lehua

Endemic to the six largest islands of Hawaii, ‘ōhi’a lehua is the dominant tree species in native forests, present in approximately 80% of the total area of these ecosystems and covering close to one million acres of land across the state. Depending on where exactly it grows, its size can vary widely, from a small shrub to a large tree. Found only in the Hawaiian archipelago, ‘ōhi’a lehua grows at elevations from sea level to higher than 9000 feet, and in a variety of habitats like shrublands, mesic forests (forests that receive a moderate amount of moisture throughout the year), and more wet, or hydric, forests.

You can easily identify the ‘ōhi’a lehua blossoms by their mass of stamens – the part of the flower that produces pollen – which are slender stalks with pollen-bearing anthers on the end. It’s what made me think the ‘ōhi’a lehua looked exactly like those fiber optic light toys. These powder puff-like flowers are most often brilliant shades of red and orange, but yellow, pink, and sometimes even white ones can be found.

‘Ōhi’a lehua grows slowly, reaching up to 20-25 meters (66-82 feet) in certain conditions.

With a little help from the wind, the seeds of ‘ōhi’a lehua travel from the tree and settle in cracks in the ground of young lava rock. It is, in every sense, a true pioneer plant. As one of the earliest plants to colonize and grow in fresh lava fields, ‘ōhi’a lehua stabilizes the soil and makes it more habitable for other species.

Even though ‘ōhi’a lehua can blanket Hawaii’s native forests, this flowering tree also grows alone, as you can see in the photograph below. Plants like ‘ōhi’a lehua fill me with happiness because they are able to grow in the most harsh, barren, and disrupted places, and they make it possible for other species to do the same. Plants like ‘ōhi’a lehua fill me with surety that even though sometimes poorly treated, the natural world will continue to be strong. Plants like ‘ōhi’a lehua make me believe in the resilience of nature.

Arid, rocky, Mediterranean coast. (Via Pexels)

How ‘Ōhi’a Lehua Cares for the Hawaiian People

Biodiversity forms the web of life we depend on for so many things – food, water, medicine, a stable climate, and more. But this connection between human beings and natural life is not always clear, understood, or appreciated. But there is a concept in Hawaiian culture called aloha ‘āina, or love of the land, which teaches that if you take care of the land, it will take care of you. The ‘ōhi’a lehua in particular takes care of the Hawaiian people in a pretty special way. 

One of the most important characteristics of this flowering evergreen tree is that it’s a keystone species, protecting the Hawaiian watershed and conserving a great amount of water. The way I see it, ‘Ōhi’a lehua is an essential glue that holds Hawaii’s native ecosystems together. The leaves of ‘ōhi’a lehua are excellent at catching fog, mist, and rain, replenishing the islands’ aquifers and providing drinking and irrigation water for Hawaiian communities. ‘Ōhi’a lehua’s ability to retain water, particularly after storms, not only makes that water accessible for other plants, but it helps mitigate erosion and flooding. The tree provides food and shelter for native insects, rare native tree snails (kāhuli), and native and endangered birds like the Hawaiian honeycreepers (‘i’iwi, ‘apapane, and ‘ākepa). ‘Ōhi’a lehua trunks protect native seedlings and act as nurse logs, providing new plants with nutrients and a growing environment.

‘I’iwi, the Scarlet Hawaiian Honeycreeper, perched on an ‘ohi’a tree (Image Credit: Nick Volpe)

The Myth of ‘Ōhi’a Lehua

‘Ōhi’a lehua may have a disproportionately large effect on Hawaii’s ecosystems as a keystone species, but its presence as a meaningful part of Hawaiian culture could be even larger. There are many versions of mo’olelo (story) about the origin of the ‘ōhi’a lehua tree, but the most common one is about young lovers named Ōhi’a and Lehua. Pele, the goddess of the volcano, changed herself into a human woman and tried to entice ‘Ōhi’a. When he denied her, Pele became enraged and transformed ‘Ōhi’a into a tree. When Lehua found out, she was so heartbroken that she prayed to the gods to somehow help her reunite with him. Answering her prayers, the gods transformed Lehua into a flower and placed her on the ‘ōhi’a tree’s limbs. To this day, it’s believed that whenever a lehua flower is picked, the skies will open up and rain will fall, because the lovers have been separated.

‘Ōhi’a Lehua as a Cultural Symbol

In Hawaiian culture, the ‘ōhi’a lehua is a symbol of love, resilience, and ecological harmony. The transformation of Ohia and Lehua into tree and flower represents the inseparable bond between two people who love each other, and between the tree and its flowers. The term pua lehua, or lehua flowers, is often used to describe people who express the same grace, strength, and resilience of the ‘ōhi’a lehua. Pilina, a Hawaiian word that means “connection” or “relationship,” is an important value in Hawaiian culture because it is a critical way for people to connect with and understand the world around them. The ‘ōhi’a lehua tree is a symbol of pilina, and embodies this relationship between the Hawaiian landscape and its people.

The ‘ōhi’a lehua is also incredibly important to hula. Hula is the narrative dance of the Hawaiian Islands, and it is an embodiment of one’s surroundings. Dancers use fluid and graceful movements to manifest what they see around them and tell stories about the plants, animals, elements, and stars. ‘Ōhi’a lehua trees and forests are considered sacred to both Pele, the goddess of the volcano as you may recall, and Laka, goddess of hula. To enhance their storytelling and evoke the gods, dancers traditionally wear lehua blossoms or buds in lei, headbands, and around their wrists and ankles.

The Dependability of ‘Ōhi’a Lehua 

‘Ōhi’a lehua has long been a part of daily life. Historically, the hardwood of the tree was used for kapa (cloth) beaters, papa ku’i ‘ai (poi pounding boards), dancing sticks and ki’i (statues), weapons, canoes, and in the construction of houses and temples. Today, the tree’s wood is used for flooring, furniture, fencing, decoration, carving, and firewood. ‘Ōhi’a lehua blossoms decorate altars for cultural ceremonies and practices. Flowers, buds, seeds, and leaves form the base of medicinal teas that can stimulate appetite and treat childbirth pain.

Threats to ‘Ōhi’a Lehua

As a native tree, ‘ōhi’a lehua competes with invasive species for moisture, nutrients, light, and space. Plants like the strawberry guava plant (Psidium cattleyanum) grow in dense thickets and block the growth of ‘ōhi’a seedlings. The invasive fountain grass (Pennisetum setaceum) can dominate barren lava flows, making it difficult for ‘ōhi’a to compete. ‘Ōhi’a lehua is also threatened by non-native animals. Hooved animals like pigs, cattle, goats, and deer disturb the soil, eat sensitive native plants, and trample the roots of ‘ōhi’a lehua trees.

The most dangerous threat to ‘ōhi’a lehua is a virulent fungus called Ceratocystis fimbriate, which attacks the tree’s sapwood, preventing it from uptaking water and nutrients, and killing the tree within weeks. It’s been given the name Rapid Ohia Death (ROD) because of how quickly it suffocates the tree, turning the leaves yellow and brown and the sapwood black with fungus. Infections spread through a wound in the bark, which can be caused by animals trampling roots, lawn mowing, or even pruning, and can be present in the tree for up to a year before showing symptoms. ROD is spread by an invasive species of wood boring Ambrosia beetle that infests the tree and feeds off the fungus. When colonizing trees, the beetle produces a sawdust-like substance made of excrement and wood particles called frass, which can contain living fungal spores that get carried in wind currents and spread by sticking to animals and human clothes, tools, and vehicles. 

Since its discovery in 2014, ROD has killed more than one million ‘ōhi’a lehua trees across 270,000 acres of land, making it a significant threat to biodiversity and cultural heritage. The International Union for Conservation of Nature (IUCN) classifies ‘ōhi’a lehua’s conservation status as vulnerable, and has recorded a decline in mature trees since 2020. Because ROD can spread long distances, it has the potential to wipe out ‘ōhi’a lehua across the entire state. If ‘ōhi’a lehua disappears, it will lead to a collapse of the Hawaiian watershed and radically change the ecosystem.

How the Hawaiian People Care for ‘Ōhi’a Lehua

Scientists, researchers, and native Hawaiians are working together to ensure the long-term health and resilience of ‘ōhi’a and Hawaii’s native forests by mitigating the spread of Rapid Ohia Death. Hawaii’s Forest Service monitors the land to track the spread of ROD and mortality of trees, has developed sanitation and wound-sealing treatments, and collaborates with hunters and game managers to reduce disease transmission. Scientists rigorously test ‘ōhi’a trees to understand the disease cycle, find out how it can be broken, and to identify trees resistant to the infection that could be used in potential reforestation efforts. 

To prevent the spread, Hawaii has announced quarantine restrictions, travel alerts, and sanitation rules. If you are shipping vehicles between islands, you should clean the entire understory with strong soap to remove all mud and dirt from the tires and wheel wells. People who go into ‘ōhi’a forests are advised to avoid breaking branches or moving wood around, to clean their shoes and clothes, and to decontaminate any tools used with alcohol or bleach to kill the fungus. Even hula practitioners are forgoing the use of ‘ōhi’a lehua.

Orange ‘ōhi’a lehua blossom (Image Credit: Joan Wasser via National Park Service)

Mālama the ‘āina

Mālama the ‘āina is a phrase that means to care for and honor the land. ‘Ōhi’a lehua is a wonderful representation of the interconnection between people and nature and I hope learning about this beautiful tree has encouraged you to appreciate the relationship we have with the Earth and what the natural world does for us. 

Remember, if you take care of the land, it will take care of you.

Abigail


Abigail Gipson is an environmental advocate with a bachelor’s degree in humanitarian studies from Fordham University. Working to protect the natural world and its inhabitants, Abigail is specifically interested in environmental protection, ecosystem-based adaptation, and the intersection of climate change with human rights and animal welfare. She loves autumn, reading, and gardening.


Sources and Further Reading:

Featured Creature: Slow Loris

What creature has large eyes, dexterous feet, and is the only venomous primate known to exist?? 

The slow loris (Nycticebus)!

Image Credit: Helena Snyder (CC BY-SA 3.0 via Wikimedia Commons)

Sometimes the smallest creatures hide the largest secrets/mysteries. At just about 10 inches long and weighing up to 2 pounds, the slow loris is, in my opinion, no exception. This small, tailless primate with large (and iconic) moon-like eyes inhabits rainforests. As omnivores, slow lorises feed on both fruit and insects. There are nine species total, all inhabiting the Southeast region of Asia ranging from the islands of Java and Borneo to Vietnam and China.

True to their name, slow lorises are not light on their feet and move slowly. Despite this, slow lorises are not related to sloths, but are instead more closely related to lemurs. But in the rainforest, that’s not such a bad thing. Their leisurely, creeping gait helps them conserve energy and ambush their insect prey without being detected.

Adaptations

Living in the dense, verdant rainforest isn’t for everyone.The jungle is riddled with serpentine vines, thick vegetation, and towering trees. But slow lorises have developed multiple adaptations that allow them to thrive in such an environment. 

  Their fur markings serve as a warning to other animals that they are not to be trifled with. This is known as aposematic colouration. Similar to skunks, contrasting fur colors and shapes signal that they are venomous which makes predators think twice about attacking. 

Slow lorises are nocturnal, and those large eyes allow them to significantly dilate their pupils, letting in more light and allowing them to easily see in near total darkness.

Even eating is no small feat in the rainforest. Slow lorises have specialized bottom front teeth, called a toothcomb. The grouping of long, thin teeth acts like a hair comb, allowing the slow loris to strip strong bark and uncover nutritious tree gum or sap. Equipped with an impressively strong grip, they can hang upside down and use their dexterous feet to hold onto branches while reaching for fruit just out of reach for most other animals. A network of capillaries called retia mirabilia allows them to do this without losing feeling in their limbs. With these adaptations, slow lorises are ideally suited for a life among the trees.

       Image Credit: David Haring (CC BY-SA 3.0 via Wikimedia Commons)

Venemous Primate

Slow lorises are the only venomous primate on Earth. They have brachial glands located in the crook of their elbow that secrete a toxic oil. When deploying the toxin, they lick this gland to venomize their saliva for a potent bite. And no one is safe– slow lorises use this venom on predators, and even each other. Fiercely territorial, they are one of the few species known to use venom on their own kind. In studying this behavior, scientists have found many slow lorises, especially young males, to have bite wounds.

The venom can be used as a protective, preventative defense mechanism as well. Female slow lorises have been observed licking their young to cover them in toxic saliva in hopes of deterring predators while they leave their babies in the safety of a tree to forage.

Whether you’re a natural predator, human, or another slow loris, a bite is very painful. Humans will experience pain from the strong bite, then a tingling sensation, followed by extreme swelling of the face and the start of anaphylactic shock. It can be fatal if not treated in time with epinephrine.

Image Credit: Helena Snyder (CC BY-SA 3.0 via Wikimedia Commons)

Bridging Human-Animal Conflicts

There are two major threats to slow loris populations – the illegal pet trade and habitat destruction. Because of their unique cuteness, soft fur, and small size, these creatures are often sold as illegal pets. Poachers will use flashlights to stun and capture the nocturnal slow loris, clip or remove their teeth  to avoid harmful bites to humans and, because of their endearing, teddy bear-like appearance, sell them off as pets. Slow lorises are nocturnal and not able to withstand the stress of being forced to be awake during the daytime. They are also often not fed a proper diet of fruit, tree sap, and insects which leads to nutritional deficiencies and poor health.


Habitat loss from agricultural expansion is another threat. As farms grow, slow loris habitat shrinks. Land cleared to plant crops encroaches upon the rainforest which results in less territory and food sources for the slow loris.

However, one scientist found a way to reduce the canopy-loss from farming and restore slow loris territory. After observing wild slow lorises using above-ground water pipes to traverse farmland, researcher Anna Nekaris had an idea. Through her organization, the Little Fireface Project, she worked with local farmers to add more water pipes to act as bridges for slow lorises to use to move about the area. These unnatural vines provided a highway connecting isolated spots of jungle to each other. Not only did the slow loris population benefit by gaining more arboreal access to trees and food sources, but the community also benefited. Nekaris worked with the farmers to provide more water pipes to their land while showing human-animal conflict can have a mutually beneficial solution.

Image Credit: Jefri Tarigan (CC BY-SA 4.0 via Wikimedia Commons)

Conservation

Every species of slow lorises is threatened, according to the IUCN, which monitors wild populations. Slow lorises may seem like an odd and somewhat unimportant creature on the grand ecological scale, but they are very important pollinators. When feeding on flowers, sap, or fruit, they are integral in spreading pollen and seeds across the forest. Through foraging and dispersal, slow lorises maintain the health of the ecosystem’s flora. 

The slow loris garners attention for its cute looks, but beneath its fuzzy face and moon-like eyes, is a creature connected to the/its environment. Slow lorises are a perfect example of how species are tethered to their habitat in an integral way – their existence directly impacts forest propagation. As a pollinator, they disperse pollen stuck on their fur to new areas and increase genetic diversity throughout the forest. Slow lorises are proof of Earth’s interconnectedness. 

To see the slow loris in action climbing from tree to tree and foraging for food, watch this short video.

Climbing up and away for now,
Joely


Joely Hart is a wildlife enthusiast writing to inspire curiosity about Earth’s creatures. She holds a Bachelor’s degree in creative writing from the University of Central Florida and has a special interest in obscure, lesser-known species.


Sources and Further Reading:

Articles

Scientific Papers

Featured Creature: Iberian Hare

What athletic creature can reach speeds of 45mph and cool itself down with large ears – all in a 2.5 kg frame? 

The Iberian hare (Lepus granatensis)!

Image Credit: Juan Lacruz (CC BY-SA 3.0 via Wikimedia Commons)

Five times the size of New York’s Central Park, Casa de Campo (literally, “country house”) outside Madrid is filled with rustic stone pine trees – emblematic of the Mediterranean and easily identified by their bare trunks and full, blooming crown of pine needles. It’s sometimes called the “umbrella pine” for good reason. Above, within, around, and beneath these trees, nearly 200 species of vertebrates live. 

Out for a run through the park, my feet pounded the dry dirt along a gradual decline for the last mile. Here, the earthen trail dipped down steeply and cut through dense brush. As I dropped in, I almost landed squarely on top of what appeared to be a large rabbit. To my surprise, it didn’t dart away; I think I was more startled than it was. You see, I’d set out on that run in part to find inspiration, follow my curiosity, and think of a creature I wanted to learn more about. I’m not such a strong believer in fate, but this rabbit (or so I thought at the time) had certainly made its case. 

I lingered and watched it mill around the brush. The more I watched, the more I wondered about its story. 

A Keystone Species On The Iberian Peninsula

The Iberian hare (Lepus granatensis) is endemic, or native, to the entire peninsula that contains Spain, Portugal, and the enclave nation of Andorra. Throughout that region they can be found in diverse habitats including dry Mediterranean scrublands, woodlands, and agricultural fields. It thrives in regions with ample vegetation that offer cover and food, adapting well to the peninsula’s varied landscapes, which range from dry, hot areas to slightly cooler, temperate zones. In some respects, Casa de Campo itself is a microcosm of these environments.

Lepus granatensis is a keystone species, meaning it occupies an essential link in the ecosystem’s food chain and plays a particularly outsized role in balancing its environment. It survives on a diet of grasses, leaves, and shoots, playing a crucial role in seed dispersal and vegetation control – and is a source of prey for a range of birds and mammals. The hare’s diet and grazing habits help control plant overgrowth and support a diverse plant community, evidenced in Casa de Campo by the more than 600,000 plant specimens found in the park alone.

The open ground this hare navigates every day is patrolled by animals who want to eat her– lynx, coyote, and red foxes from the land and eagles, owls, hawks, and red kites from the air. To get from point A to point B she must be fast, and she is. Powerful hind legs propel Lepus granatensis to top sprinting speeds of 45-50 miles-per-hour, making her one of the fastest land animals on the peninsula. It’s a pace that puts my nine-minute mile to shame, and is an essential adaptation to survive here, far from the relative safety of dense forest or lush meadow. 

       Casa de Campo, a 4,257 acre park on the edge of Madrid, boasts more that 600,000 plant specimens and nearly 200 species of vertebrates.
Image by author, who was apparently far too busy taking pictures instead of running while on his run.

Nature’s Air Conditioning

When I first started coming to Madrid, adapting to the sparing or non-existent use of air conditioning in the summer was an adventure, to say the least. I can do without the Chipotle and readily available iced coffee, but having been raised on A/C since I was born, it took some getting used to. Unlike me in this regard, the hare I ran into that day is well suited to her environment. It is one of large, open landscapes dotted with thick low lying brush, olive trees, holm oaks, and pines. Rainfall is infrequent, and summers are scorched by the strong Spanish sun. 

Her ears are larger and thinner than those of a rabbit. They often stand upright. When backlit, one can easily make out a network of veins and arteries, traversing the ear like rivers and streams through a watershed.

An unidentified leporid (family of rabbits and hares) displaying the network of arteries and veins that help transfer heat from warm blood to the surrounding air, keeping her cool.
Image by author.

Therein lies her secret. Hares don’t perspire like you and me– nor do they pant like a canine. Instead, they depend on their large, thin-skinned ears to act as thermostat and air conditioner. No, they don’t flap them like a paper fan. Instead, they help her cool down by getting hotter.

When the hare needs to release excess heat, she can expand that network of blood vessels in her ears, allowing her to redirect hot blood away from her body and through the thin skin of her ears. Because her ears have a large surface area putting those veins in closer contact to the ambient air, this increased blood flow facilitates the dissipation of heat into the ever so slightly cooler surrounding air, helping her regulate her body temperature effectively.

We see this strategy of counter-current thermoregulation in nature again and again, in the ears of elephants and deer, and a variation in the snow and ice-bound paws of the arctic fox.

Thermal imaging demonstrating how heat retention and dissipation in rabbits is concentrated through the ears. Image credit: V. Redialli, et al., 2008
This thermal video clearly illustrates the
heat disparity between a rabbit’s ears, and the rest of its body.

Confronting a Microscopic Threat

Before I continued my run, I fired off a few observations to a zoologist friend of mine for help with the species identification. Among them was what we suspected to be a bad case of conjunctivitis in both eyes; significant levels of swelling and discharge were present. 

While neither of us can offer a certain diagnosis for this particular hare, further research has indicated that something more serious is afoot.

In 1952, France was well into its post-war reconstruction, buoyed along by a growing economy and population. As the country was just beginning a new chapter in its story, so too was recently retired physician Dr. Paul-Félix Armand-Delille. In his new-found free time, Armand-Delille took up great interest in the pristine care and management of the grounds of his estate, Château Maillebois, in the department of Eure-et-Loir, a little more than 100km west of Paris.

Troubled by the presence of wild European rabbits (Oryctolagus cuniculus) on his property, Armand-Delille read about the success Australian farmers had found using strains of the myxoma virus to control invasive rabbit species on that continent (they’d been imported by an Englishman decades earlier). Using his old medical connections, Armand-Delille secured some myxoma virus for himself and intentionally infected and released two of the rabbits on his property, confident that they would not be able to leave it. 

Armand-Delille’s Château Maillebois today.
Image credit: Marcengel (CC BY-SA 3.0 via Wikimedia Commons)

In just one year, nearly half of all wild rabbits in France would be dead, consumed by myxomatosis, the disease caused by the myxoma virus. In the decades since, the disease has ravaged Oryctolagus cuniculus populations across Europe, shrinking their numbers to just a fraction of what they were at mid-century. The sudden, near overnight disappearance of the European rabbit also crippled populations of its specialist predator, the Iberian lynx (Lynx pardinus). With the lynx unable to replace the rabbit in its diet, the species was pushed to the brink of extinction. Recent conservation efforts have helped recover and stabilize populations, but Lynx pardinus remains a “vulnerable” species. 

Fortunately, over just the last few decades some populations of the European rabbit have resurged, having developed strong resistance to the virus.

But viruses are always trying, though usually failing, to jump from one host species to another. As species migrate and habitats converge, a virus gets more and more chances to make the leap.

As early as 2018, myxoma succeeded in making the leap from Oryctolagus cuniculus to Lepus granatensis. The virus that causes myxomatosis has wreaked havoc on Iberian hare populations on the peninsula; a species that did not have the advantage of decades and decades of exposure to build up resistance. Myxomatosis can cause fever, lesions, lethargy, and, it turns out, severe swelling and discharge around the eyes. Sometimes these symptoms can subside. But for the Iberian hare the virus is remarkably lethal, with a mean mortality rate of about 70%. Data indicates that since 2018, the virus has decimated Iberian hare populations. This break in the chain has serious implications for both the vegetation the hare keeps in check and the predators that depend on the hare as prey – implications that we are only beginning to understand.

The impact of myxomatosis outbreaks on Iberian hare populations after the 2018 species jump event. Image credit: Cardoso B, et al.

As a warming world continues to heat Iberia, the delicately balanced ecosystem Lepus granatensis inhabits is increasingly jeopardized. More intense storms flood the parched terrain while stifling heat and wildfires threaten vegetation. Lepus granatensis is likely to migrate north in search of more tolerable environments that can sustain the plant life it depends on for both food and cover. The further north the hare goes, the more its new habitat will overlap with the European rabbit and other species. The future of large populations of Lepus granatensis in the face of this disease and increasing climate fallout is uncertain. Since returning to Casa de Campo, I’ve noticed the swelling and discharge in other leporids as well.

Lepus granatensis
Image credit: JoseVi More Díaz (CC-BY-NC-ND)

Complexity

This isn’t the story I set out to tell. When I stumbled on the hare, I expected to write an essay about reconnecting with nature as I embarked on my own new journey as part of the Bio4Climate team. 

Transitioning from a place of hope and curiosity, to understanding the more dire situation faced by both the hare I crossed paths with and the species as a whole was deflating. Yet, that’s all part of nature’s complexity; we don’t always get the happy endings we want. To some extent, these aren’t our stories to write. But even that conclusion is built around a false premise, because none of these stories are over. 

The recent outbreak has prompted renewed research interest into threats facing hare populations. And even if we distill the bigger story down to this specific hare, I don’t know what will become of her. No, the odds aren’t great. But in the time that I watched her she simply carried on, foraging away in the brush. It’s a small thing to observe, but I think there’s hope in that— in identifying the struggle and the resilience of living things, and channeling that understanding to shape a better world. 

It’s hard not to think about the web of plants, animals, ecosystems, and microscopic organisms that have been set on a collision course with each other as they seek to rebalance themselves. And in the middle of it all is us. 

After watching the hare for a few minutes, I continued my run. The trail led out of the brush and opened up into a large, flat field, sparingly dotted with those umbrella pines. At that moment, a bird I later identified in iNaturalist as a red kite (Milvus milvus) dropped out of one of the trees, skimmed the earth, and climbed into the sky. 


Brendan began his career teaching conservation education programs at the Columbus Zoo and Aquarium. He is interested in how the intersection of informal education, mass communications and marketing can be retooled to drive relatable, accessible climate action. While he loves all ecosystems equally, he is admittedly partial to those in the alpine.  


Sources and Further Reading:

Articles

Scientific Papers

Featured Creature: Coelacanth

What 200-pound nocturnal sea creature, thought to be extinct for millions of years, has one of the longest gestation periods among vertebrates? 

The Coelacanth!

Bruce A.S. Henderson (Wikimedia Commons)

This sea creature was thought to be extinct for 65 million years before it was rediscovered in 1938. Ancient and rare, the coelacanth is a fish so named from its fossil. Scientists knew this fish once existed but never expected to find it alive in the depths of the ocean. The coelacanth (pronounced seel-a-canth) is about 200 pounds and can grow to over 6.5 feet in length.  Two species exist today – the Indonesian coelacanth (Latimeria menadoensis)  and the African coelacanth (Latimeria chalumnae).

Anatomy

Coelacanth is derived from Latin and means “hollow spine” due to their hollow caudal fin rays. They have thick scales giving them an ancient appearance.These fish lack boney vertebrae. Instead, they have a notochord which is a fluid-filled rod beneath the spinal cord. Coelacanths also use a rostral organ to detect the electrical impulses of nearby prey much like stingrays and sharks. Most distinctive is the coelacanth’s limb-like pectoral fins that appear more like an arm than a fin. The coelacanth has a very unique anatomy. No other fish on Earth possesses these special features. 

Diet

The next discovery of a live coelacanth came in 1952 – 14 years after the first revelation. But why did it take so long for another fish to be caught? Coelacanths live at great very deep depths, often over 500 feet beneath the surface of the ocean. When they venture into shallower waters, they tend to do so at night. Coelacanths are nocturnal predators.They hide under rock formations and in caves until nightfall when they emerge to hunt other fish, crabs, eels, and squid.They use their hinged skull which enlarges their gape to swallow prey.

Population

The IUCN has listed the coelacanth as critically endangered. It is estimated that only 500 coelacanths exist today. Although not considered an edible fish, as its meat is too oily for consumption, the coelacanth still falls prey to deep-sea fishing nets. If caught as by-catch, coelacanths can die from the stress. These threats can deeply affect the population because coelacanths have an unusually long gestation period of three years – the longest of any vertebrate species. Such factors make coelacanths extremely vulnerable to extinction. 

Dean Falk Schnabel (CC BY-SA 4.0 via Wikimedia Commons)

The story of the coelacanth proves there is always more to discover. Biodiversity fosters a sense of curiosity about the endless possibilities of the natural world.

I wonder, if a creature like this still exists, what other species remain unknown to humanity?

Swimming away for now, Joely


Joely Hart is a wildlife enthusiast writing to inspire curiosity about Earth’s creatures. She holds a Bachelor’s degree in creative writing from the University of Central Florida and has a special interest in obscure, lesser-known species.


Sources and Further Reading:
https://a-z-animals.com/animals/mouse-deer-chevrotain
https://www.khaosok.com/national-park/mouse-deer
https://www.ultimateungulate.com/Artiodactyla/Hyemoschus_aquaticus.html
https://factanimal.com/chevrotain/
https://www.npr.org/2019/11/11/778312670/silver-backed-chevrotain-with-fangs-and-hooves-photographed-in-wild-for-first-ti

Featured Creature: Chevrotain

What creature is the world’s smallest ungulate?

The chevrotain!

Photo by Bjørn Christian Tørrissen (CC BY-SA 3.0 via Wikimedia Commons)

The chevrotain is an incredibly unique animal native to India and Southeast Asia. This creature is just 12 inches tall and about 29 inches long – the size of a rabbit. It weighs approximately 4-11 pounds and sports a reddish-chestnut brown coat with white markings on its chest. The chevrotain is the world’s smallest hoofed mammal. The chevrotain is also called the mouse-deer, but is not related to either a mouse or deer. Entirely a species of its own, the chevrotain is a one-of-a-kind creature.

There are ten species of chevrotain, nine of which reside in Asia while one – the water chevrotain – is native to Africa, spanning from Southern Benin to the Democratic Republic of Congo. This particular species lives near rivers and lakes as its name implies. When threatened, the water chevrotain will submerge itself underwater for up to four minutes to escape a predator. All chevrotains are very small with the tiniest being the lesser Malay chevrotain at 4 pounds and the largest being the water chevrotain at 33 pounds.

Photo by P. Jeganathan (CC BY-SA 4.0 via Wikimedia Commons)

Diet

These miniature ungulates are herbivores and feed on vegetation like grasses, leaves, roots, flowers, and fruit. The chevrotain is a ruminant and has a 4 chambered stomach similar to that of a cow’s. This stomach helps digest fibrous plant material and extract nutrients from plant matter. Chevrotains inhabit jungles and forage for low hanging and fallen fruit as well as ground plants that are easy to reach due to their short stature. 

Fangs

Despite looking like mini-deer, chevrotains do not have antlers. Instead, they have elongated incisors. In males, these teeth protrude beyond the mouth like tusks which are used when fighting. Chevrotains also  use their long fangs to expose roots for consumption.

Photo by Vassil (via Wikimedia Commons)

Jungle Ghosts

Chevrotains are known for being solitary, quiet, and difficult to find amongst dense forests. One species in particular has remained hidden from scientists for nearly 30 years – until recently. The silver-backed chevrotain, native to Vietnam, had not been seen for decades, despite camera traps and excursions to find the creature. But in 2017, that all changed. A camera trap captured the elusive silver-backed chevrotain, the first sighting since 1990. Still, so little is known about this species that the IUCN has assigned the status of “data deficient”. 

Conservation ensures that no species is lost to history and reinforces the importance of a diverse ecosystem where every organism has a vital role to play. Even when all hope seems lost, life finds a way.

Treading quietly away for now,
Joely


Joely Hart is a wildlife enthusiast writing to inspire curiosity about Earth’s creatures. She holds a Bachelor’s degree in creative writing from the University of Central Florida and has a special interest in obscure, lesser-known species.


Sources and Further Reading:
https://a-z-animals.com/animals/mouse-deer-chevrotain
https://www.khaosok.com/national-park/mouse-deer
https://www.ultimateungulate.com/Artiodactyla/Hyemoschus_aquaticus.html
https://factanimal.com/chevrotain/
https://www.npr.org/2019/11/11/778312670/silver-backed-chevrotain-with-fangs-and-hooves-photographed-in-wild-for-first-ti

Featured Creature: Blue Whale

Which creature who helps fight climate change has newborns the size of an adult elephant and is not a fan of boats?

The Blue Whale!

Photo from National Marine Sanctuaries (via Wikimedia Commons)

Big, bigger, and biggest

Blue whales are the largest creature to ever grace this Earth. They can grow to around 100 ft (33 meters), which is more than twice the size of a T-Rex dinosaur! Newborn calves are around the same size as an adult African elephant – about 23 ft (7 meters). To get more of an idea of how huge these animals are, picture this: a blue whale’s heart is the size of a car, and their blood vessels are so wide a person can swim through them!

Despite their large size, blue whales eat tiny organisms. Their favorite food is krill, small shrimp-like creatures. They can eat up to 40 million of these every day. They do so by opening their mouths really wide, and after getting a mouthful, they’ll close their mouths and force out the swallowed water with their tongue, while trapping the krill behind their baleen plates – this method is known as filter feeding.

Photo by Don Ramey Logan (CC BY-SA 3.0 via Wikimedia Commons)

From coast to coast

Blue whales live in every ocean except the Arctic. They usually travel alone or in small groups of up to four, but when there are plenty of krill to go around, more than 60 of these mega-creatures will gather around and feast. 

Blue whales can communicate across 1,000 miles (over 1600 km)! Their calls are loud and deep, reaching up to 188 decibels – so loud that it would be too painful for human ears to bear. Scientists believe that these calls produce sonar – helping the whales navigate through dark ocean depths.

Climate Regulator

All that krill has to go somewhere, meaning out the other end. Whale poop helps maintain the health of oceans by fertilizing microscopic plankton. Plankton is the bedrock of all sea life, as it feeds the smallest of critters, and these critters then feed larger creatures (and on goes the food chain). Plankton include algae and cyanobacteria that get their energy through photosynthesis, and they are abundant throughout Earth’s oceans. These microorganisms contribute to carbon storage by promoting the cycling of carbon in the ocean, rather than its emission in the form of carbon dioxide.  Without whales, we wouldn’t have as much plankton, and without plankton, the food cycle would collapse, and more gas would rise to the atmosphere. Therefore, whale poop acts as a climate stabilizer.

Learn more about this whale-based nutrient cycle here:

Size doesn’t equal protection

Unfortunately, the sheer size of blue whales isn’t enough to prevent them from harm. Blue whales were heavily hunted until last century, and although a global ban was imposed in 1966, they are still considered endangered. 

Today, blue whales must navigate large and cumbersome fishing gear. When they get entangled, the gear attached to them can cause severe injury. Dragging all that gear adds a lot of weight, so this also zaps their energy sources. Since blue whales communicate through calls intended to travel long distances, increased ocean noise either from ships or underwater military tests can also disrupt their natural behaviors. 

Another threat blue whales face are vessel strikes. They can swim up to 20 miles an hour, but only for short bursts. Usually, blue whales travel at a steady pace of 5 miles per hour. This means that they aren’t fast enough to dodge incoming vessels, and these collisions can lead to injuries or even death for the whales. In areas where traffic is high, such as ports and shipping lanes, this threat becomes even more prominent.

To protect blue whales, and our oceans, we can implement sustainable fishing practices that use marine mammal-friendly gear. We can also reduce man-made noise, and utilize precautionary measures when venturing out to sea. That way we avoid vessel strikes and have a higher chance of witnessing the largest creature to ever grace our planet.

For creatures big, bigger, and biggest,
Tania


Tania graduated from Tufts University with a Master of Science in Animals and Public Policy. Her academic research projects focused on wildlife conservation efforts, and the impacts that human activities have on wild habitats. As a writer and activist, Tania emphasizes the connections between planet, human, and animal health. She is a co-founder of the podcast Closing the Gap, and works on outreach and communications for Sustainable Harvest International. She loves hiking, snorkeling, and advocating for social justice.


Sources and Further Reading:
https://us.whales.org/whales-dolphins/facts-about-blue-whales/
https://www.natgeokids.com/uk/discover/animals/sea-life/10-blue-whale-facts/
https://www.fisheries.noaa.gov/species/blue-whale 
https://www.greatwhaleconservancy.org/how-whales-help-the-ocean

Featured Creature: Atlantic Puffin

What striking seabird is a master of adaptability in the ocean and the air? 

The Atlantic Puffin!

Image by Anne-Ed C. from Pixabay

Nestled around the edges of the North Atlantic, the Atlantic Puffin, or Fratercula arctica, is a seabird of great charm and adaptability. Resembling a penguin in its coloration, yet distinguished by its multicolored and uniquely shaped bill, this captivating creature is often affectionately dubbed the “sea parrot.” 

Atlantic puffins have also been known as “sea clowns” because of that funky flattened bill, but make no mistake – these are some seriously impressive seabirds. With sophisticated burrows, skillful hunting, and dedication to raising families with determined care, these bright birds are marvels of the ocean.

Image by Mario from Pixabay

Aquatic Aviators

Atlantic puffins spend the majority of their lives navigating the vast expanse of the North Atlantic, where they are found on islands and coastal shores from North America to Scandinavia. With wings that double as paddles, they can “fly” through the water, propelled by powerful flippers and webbed feet.

These adept swimmers dive to impressive depths of up to 200 feet, hunting small fish like sand eels and herring with remarkable precision. In addition to their aquatic prowess, puffins can also fly, though they are unable to soar like other broad winged seabirds. Instead, using wings that can flap up to 400 times per minute, Atlantic puffins are able to reach speeds of up to 55 miles per hour (88.5 km/h).

Image by Decokon from Pixabay

Family Life

During the breeding season, thousands of puffins gather in colonies along the coasts and islands of the North Atlantic. These colonies provide safety in numbers, shielding the birds from larger predators like skuas and gulls that patrol the skies above. The breeding season sees puffins at their most colorful, with those distinctive bills featuring their blue-gray triangles accented in bright yellow. When the season is over, the bills’ outermost layers actually molt, and revert to a partly gray and partly orange color combination. 

Puffins exhibit strong pair bonds, often forming lifelong partnerships with their mates. They engage in affectionate behaviors such as rubbing and tapping beaks, reinforcing their bond year after year. Remarkably, these avian couples frequently return to the same burrow to raise their young each season.

Using their beaks and claws, they construct deep burrows that nestle between rocky crags and crevices. These generally feature separate tunnels that are used as a bathroom area, and a main nesting chamber that serves as a safe haven for incubating eggs, which hatch after a period of 42 days. 

Pufflings, as these chicks are called, are adorned with fluffy feathers that will eventually facilitate their ability to swim and fly. Both parents play an active role in incubating the egg and caring for their offspring once it has hatched, fetching food for the young puffling with skill and dedication. They make use of a unique adaptation of small spines along their bills, tongues, and the roofs of their mouths that allow them to hold bunches of fish in place as they fly from their hunts on open waters back to the nests where their young ones wait. It is estimated that during the time a puffling stays in its burrow dependent on this care, its parents will make close to 12,400 dives total to keep up the steady supply of food.

Image by Simon Marlow from Pixabay

Persevering Under Threat

Despite their remarkable adaptability, Atlantic puffins face a number of challenges in the modern world. From habitat loss and predation to climate change and human disturbances, these beloved seabirds are confronted with an uncertain future, and they are currently classified as Vulnerable by the IUCN (International Union for Conservation of Nature). In particular, as ocean temperatures rise and fish populations decline or shift their habitat, puffins struggle to find food with enough frequency and reliability to get by. Conservation and restoration measures can help ease these pressures by preventing overfishing, ensuring abundant marine ecosystems, and allowing all forms of ocean life, from underwater critters to seabirds, to survive and adapt. While the intersecting challenges of a warming and increasingly chaotic planet may be complex, modifying human behaviors has made a tremendous difference for these colorful creatures before. 

Take a look at the story of their bounce back from near extinction in the 20th century:

May we take hope in our power to shape our planet’s future for the better, and show the same love and dedication to these sweet seabirds as they do to their young pufflings. 

Flapping away now,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources and Further Reading:
https://www.allaboutbirds.org/guide/Atlantic_Puffin/overview#
https://www.nationalgeographic.com/animals/birds/facts/atlantic-puffin
https://kids.nationalgeographic.com/animals/birds/facts/atlantic-puffin
https://www.audubon.org/field-guide/bird/atlantic-puffin
https://abcbirds.org/bird/atlantic-puffin/
https://www.science.org/content/article/watch-puffin-use-tool-scratch-itch
Recent changes in the diet and survival of Atlantic puffin chicks in the face of climate change and commercial fishing in midcoast Maine, USA. Stephen W. Kress, Paula Shannon, Christopher O’Neal. FACETS 21 April 2016. https://doi.org/10.1139/facets-2015-0009

Featured Creature: Humpback Whale

What species of tremendous size and grace undertakes the largest mammal migration on Earth? 

The humpback whale!

Image by Brigitte Werner from Pixabay

In the vast expanses of the world’s oceans, a symphony of moans, cries, and howls fills the water, echoing across great distances. This stunning serenade is the song of the humpback whale, one of the most majestic creatures to grace the seas. 

Scientifically known as Megaptera novaeangliae, the humpback whale derives its common name from the distinctive hump on its back. With dark backs, light bellies, and long pectoral fins that resemble wings, these whales are a sight to behold. Their Latin name, signifying “big wing of New England,” pays homage to those impressive pectoral fins and early encounters European whalers had with these graceful giants off the coast of New England. 

Image by Monica Max West from Pixabay

Humpback whales are renowned for their enchanting songs, which echo through the ocean depths for great distances. These compositions, which consist of moans, howls, and cries, are among the longest and most complex in the animal kingdom. Scientists speculate that these melodic masterpieces serve as a means of communication and courtship, with male humpbacks serenading potential mates during the breeding season for minutes to hours at a time. Songs have also been observed during coastal migrations and hunts. Many artists have taken inspiration from these songs, and you can even listen to eight-hour mixes of them to help you get to sleep. Check it out:

Another marvel of the humpback are their awe-inspiring displays of acrobatics, from flipper slapping to full-body breaching. Despite their colossal size, these creatures display remarkable agility and grace. With lengths of up to 62.5 feet (19m, or one school bus!) and weights of 40 tons (40,000 kg), humpback whales are true behemoths of the ocean.

Life on the move

Life for a humpback whale is a tale of two halves—a perpetual journey between polar feeding grounds and tropical breeding waters. These remarkable migrations span thousands of miles and rank as one of the longest animal migrations on the planet, and the longest among mammals. 

Feasting on plankton, krill, and small schooling fish, humpback whales are skilled hunters, capable of consuming up to 1,360 kilograms of food per day. Employing innovative techniques such as bubble-netting and kick-feeding, they ensnare their prey with precision and efficiency. Generally these whales stay in small and dynamic groups, and they use their social intelligence and coordination to orchestrate these group hunting mechanisms. 

Ecological powerhouses

Humpback whales’ feeding and movement contributes to more than just their own wellbeing. As these majestic creatures feed on zooplankton, copepods, and other food sources in the oceans’ depths, and subsequently ascend to the surface, they disrupt the thermocline—a boundary between surface and deep waters—facilitating greater mixing of ocean layers. This enhanced mixing fosters increased nutrient availability, benefiting a myriad of marine organisms. 

They also cycle nutrients through their own consumption and excretion, contributing to a phenomenon known as the “biological pump.” These whales ingest biomass and nutrients from microscopic and small macroscopic organisms in deeper waters, digest it, and excrete their own waste in large macroscopic fecal plumes on the ocean’s surface. This cyclical process effectively transports nutrients from the ocean depths back to the surface, replenishing vital elements such as nitrogen for algae and phytoplankton growth. In regions like the Gulf of Maine, the nitrogen influx from whale feces surpasses that of all nearby rivers combined, underscoring the profound impact of these marine giants on nutrient cycling. Finally, when a whale’s life has come to an end, its own massive body sinks to the ocean floor and countless organisms are nourished by it in the decomposition process.

Image by shadowfaxone from Pixabay

Conservation and Resurgence

Understanding the multifaceted lives and roles of humpback whales underscores the urgency of their conservation. Historically valued solely for commercial exploitation, these majestic creatures now emerge as essential components of oceanic ecosystems. Though humpback whales have faced centuries of exploitation and habitat degradation, concerted conservation efforts offer hope for their survival, not only safeguarding whales themselves but also preserving the intricate ecological processes that sustain marine life and biodiversity. 

Whales continue to face threats from ship collisions, entanglement in fishing gear, noise pollution, and the disruption of habitat for their food sources due to trawling, pollution, and encroachment. But strong advocacy has brought these creatures back from the brink before, and our conservation and restoration work can safeguard the future of these enchanting giants and ensure that their songs continue to echo through the seas for generations to come.

Take a look at Sir David Attenborough’s tale of their resurgence and beauty:

May we steward the ocean with love and care,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources and Further Reading:
https://www.fisheries.noaa.gov/species/humpback-whale
https://www.nationalgeographic.com/animals/mammals/facts/humpback-whale
https://www.nwf.org/Educational-Resources/Wildlife-Guide/Mammals/Humpback-Whale
https://us.whales.org/whales-dolphins/species-guide/humpback-whale/
https://www.pbs.org/wnet/nature/blog/humpback-whale-fact-sheet/
https://conservationconnections.blogspot.com/2012/05/importance-of-whale-poop-interview-with.html
https://www.youtube.com/watch?v=uRY9giOUTrI (Whales as Keystone Species – Cycling Nutrients, Carbon and Heat with Joe Roman at Bio4Climate’s Restoring Oceans conference)

Featured Creature: Canada Lynx

What furry feline has stealthy skills, built-in snow gear, and a surprising screech? 

The Canada lynx!

Photo by Kevin Pepper

The Canada lynx, also known as Lynx canadensis or the Inuktut name of ᐱᖅᑐᖅᓯᕋᖅ (‘piqtuqsiraq’), is a charismatic mammal of the Northernmost parts of North America. This furry, fierce cousin of the bobcat can be found in Canada, of course, as well as Alaska and in some parts of Northern Maine. 

This forest feline may resemble a larger version of a housecat, but its predatory prowess is nothing short of formidable. With a heavy coat of fur, including distinctive tufts at its ears and a short, black-tipped tail, large paws that help navigate snowy terrain, and excellent vision and hearing, the Canada lynx is extremely well adapted to its environment. 

Photo by Laura Lorman from National Wildlife Federation

Prime Predator

In terms of physical attributes and behavior, the Canada lynx possesses exceptional senses, including large eyes and acute hearing, making it an adept nocturnal hunter. In fact, they are able to detect prey in the darkness from as far as 250 feet (76 m) away. 

Although not known for speed, these stealthy predators rely on their knack for stealth. They often lie in wait, concealed in strategic hiding spots, before making a calculated pounce on unsuspecting prey. Patiently biding their time for hours on end is not uncommon in their pursuit of sustenance.

Exhibiting a very specific carnivorous diet, these lynxes primarily subsist on snowshoe hares, and fluctuations in hare populations directly correlate with the rise and fall of lynx numbers. When it is available, a single lynx might consume an entire hare for a meal, storing remnants for later consumption. In the absence of hares, they resort to hunting small mammals, birds, and occasionally larger prey such as caribou.

Photo from Shuttershock

Suited to the snow 

Characterized by a compact body, diminutive tail, and elongated legs, the Canada lynx sports a dense, lengthy, and gray fur coat during winter, while transitioning to a shorter, lighter brown coat in summer. Their facial appearance appears broad due to elongated fur patches extending from their cheeks that can give the appearance of a two-pronged beard. They also sport distinctive black-tipped, bobbed tails and elongated tufts on their triangular ears.

Closely resembling the southern-dwelling bobcat, the key difference lies in their tails— the Canada lynx boasts completely black-tipped tails compared to the bobcat’s tail that features a white ring below the black tip. Moreover, the lynx’s sizable, heavily furred paws act as natural snowshoes, with a high surface area to support their movement over deep snow, aiding their mobility during winter hunts.

Residing across forested regions spanning Canada, Alaska, and certain parts of the contiguous United States, Canada lynxes prefer making dens under fallen trees, tree stumps, rock formations, or dense vegetation. These territorial animals are mostly solitary, particularly with male lynxes leading an almost entirely solitary existence. 

Photo from National Geographic

However, young lynxes stay in the care of their mothers for about a year, and some females have been observed living and hunting in pairs, raising questions for scientists about the social behavior of these big cats. Recently, a team of researchers has begun delving into the social lives of lynxes by tracking their vocalizations. And whether or not you are engaged in studying lynx populations, it’s well worth checking out the haunting sounds of the lynx call:

Big Cats of the Boreal

The Canada lynx, a native denizen of the expansive Boreal Forest, relies heavily on this vast and biodiverse habitat for survival. The boreal ecosystem, characterized by its dense forests of coniferous trees, provides the ideal cover and sustenance for these elusive predators. The lynx thrives amidst the rich tapestry of dense vegetation, fallen trees, and rocky outcrops, creating a mosaic of hiding spots and denning sites crucial for their survival. However, threats to the Boreal Forest, including deforestation, habitat fragmentation, and climate change, pose significant risks to the Canada lynx population. 

Deforestation for logging, mining, and human settlement disrupts the lynx’s habitat, diminishing their hunting grounds and safe havens. Fragmentation of the forest reduces connectivity between lynx populations, affecting genetic diversity and hindering their ability to roam and find suitable mates. Climate change exacerbates these issues, altering the boreal ecosystem and impacting prey availability, which is pivotal for the lynx’s sustenance. The cumulative effect of these threats imperils the Canada lynx, highlighting the urgent need for conservation efforts to safeguard both the lynx and its vital habitat in the Boreal Forest, which in turn plays an essential role regulating the carbon and water cycles and overall stability of our climate.

The Canada lynx is more than just an example of might and physical prowess in nature. A true embodiment of the northern forests, these elusive creatures and their unique lifestyle are treasures of the wild. Let us work for ecological integrity in all forests and ecosystems, Boreal and beyond. 

For my fellow cat lovers,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources and Further Reading:
https://canadiangeographic.ca/articles/animal-facts-canada-lynx/
https://racinezoo.org/canada-lynx-fact-sheet
https://www.nwf.org/Educational-Resources/Wildlife-Guide/Mammals/Canada-Lynx
https://www.nrcm.org/nrcm-creature-feature/canada-lynx/
https://www.nationalgeographic.co.uk/animals/2020/07/lynx-take-epic-2000-mile-treks-but-why-is-a-mystery
https://defenders.org/blog/2020/09/link-between-lynx-and-national-forests
https://theconversation.com/we-eavesdropped-on-some-canadian-lynx-what-we-heard-was-surprising-161539

Featured Creature: Fishing Cat

What fascinating feline with unique adaptations roams the aquatic ecosystems of Southeast Asia?

The fishing cat, otherwise known as Prionailurus viverrinus!

Image by G.C. from Pixabay

One Clever Cat

Venturing into the world of fishing cats unveils a marvel of feline prowess and adaptability. These incredible creatures, found across 11 countries in Southeast Asia, possess a unique combination of features that defy conventional feline stereotypes. 

Their distinct traits include a squat, stocky build, equipped with short, webbed feet, and an olive-gray coat adorned with black spots and stripes. Contrary to the belief that cats avoid water at all costs, fishing cats exhibit an unparalleled affinity for aquatic habitats. Indeed, these exceptional swimmers and adept hunters inhabit wetlands, marshes, and mangrove forests.

Image by G.C. from Pixabay

One of the most striking features aiding the waterborne adventures of the fishing cat is the webbing between their toes, facilitating seamless navigation through muddy wetlands without sinking. Additionally, their fur boasts a dual-layered composition: a short, dense undercoat shields their skin from the elements while swimming, while longer guard hairs contribute to their distinctive coloration, providing ideal camouflage for hunting in varied terrains.

Hunting primarily near water bodies, fishing cats display remarkable adaptability in their diet, feasting not only on fish but also on crustaceans, amphibians, and various aquatic creatures. These agile predators employ ingenious techniques, using their paws to scoop fish from shallow waters or even diving headfirst into deeper areas to secure a meal with their teeth. Their versatile diets extend to snakes, rodents, and even larger prey like young deer and wild pigs, but fish comprise about three quarters of their food.  

Watch a juvenile try to learn the process:

Fishing cats navigate diverse ecosystems with ease, forging their existence in habitats ranging from freshwater landscapes to coastal regions. While much of their behavior in the wild has eluded observation, fishing cats, which are nocturnal animals, are thought to have no natural predators besides humans. They tend to roam wetlands and areas that larger cats and predators aren’t well suited to inhabit. However, humans provide plenty of issues to contend with, and due to the pressures of habitat encroachment, development, and poaching, fishing cats are classified as a vulnerable species.

Smithsonian’s National Zoo, Jessie Cohen

Human and Habitat Pressures

In India, conservationists and researchers have embarked on a pivotal journey to safeguard these elusive creatures. The country’s many wetland ecosystems, integral to the fishing cat’s survival, face mounting threats from human encroachment, urbanization, and environmental degradation. Increasing development comes with issues of draining wetlands, polluting them, or altering their composition and natural salinity of the soil due to aquaculture operations. 

Many organizations, like the Wildlife Institute of India and the Eastern Ghats Wildlife Society, have sprung up to champion the cause of fishing cats and understand more about these creatures. Studies conducted in sanctuaries and wildlife reserves have shed light on the behavior, habitat preferences, and dietary patterns of fishing cats in captivity. Initiatives to map their territories and understand their population dynamics have proven more challenging, yet vital for conservation strategies. Camera trap surveys in regions like the Coringa Wildlife Sanctuary and the Krishna Wildlife Sanctuary have uncovered pockets of fishing cat populations, offering valuable insights into their distribution across diverse landscapes.

Juvenile Fishing Cat on a Branch (Photo by Michael Bentley from Wikipedia, CC 2.0) 

The evolving understanding of fishing cats has inspired conservation campaigns aimed at raising awareness among local communities. Educational programs, including the “Children for Fishing Cats” initiative, have empowered younger generations to become advocates for wildlife conservation, fostering harmony between human activities and the preservation of vital ecosystems.

Amidst the growing threats posed by habitat loss, human-wildlife conflicts, and climate change, conservationists advocate for stronger legislation and reinforced protection measures for wetlands and associated habitats. Efforts to mitigate conflict situations, prevent retaliatory killings, and promote sustainable practices among fishing communities stand as cornerstones in safeguarding these resilient creatures and their fragile environments.

As researchers navigate the delicate balance between human activities and wildlife conservation, the overarching goal remains clear: preserving the wetlands that sustain the extraordinary fishing cats is indispensable for safeguarding biodiversity, ensuring ecological resilience, and fostering coexistence between humans and these remarkable felines. More people and organizations are also coming to appreciate the benefits of healthy wetland ecosystems for buffering against storm surges, protecting water quality, contributing to the water cycle, and helping fight climate change. 

As we protect and restore our wetlands, we can safeguard the future for fishing cats, the ecosystems they regulate, and the web of life that connects us. 

For my fellow water lovers everywhere,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources:
https://www.bbc.com/future/article/20210416-the-fight-to-save-indias-most-elusive-cat
https://animals.sandiegozoo.org/animals/fishing-cat
https://en.wikipedia.org/wiki/Fishing_cat 
https://nationalzoo.si.edu/animals/fishing-cat

Featured Creature: American Chestnut

Photo by Jean Mottershead flickr.com

What tree, the “Redwood of the East,” once dominated the forests of the Eastern United States, and the cultural landscape as well?

The American Chestnut!

Photo by Jean Mottershead flickr.com

What Nat King Cole, Mel Torme’ and Bing Crosby Were Singing About

According to legend, songwriter Robert Wells, trying to stay cool during the hot summer of 1945, put to paper his favorite parts of winter, eventually turning those thoughts into “The Christmas Song.” First on his list – “chestnuts roasting on an open fire.”

Now maybe, if you are like me, you find that a curious choice. Were chestnuts really that important to the Christmas experience? Before yuletide carols and Jack Frost? Before turkeys and mistletoe and tiny tots who can’t sleep because “SantaSantaSanta?” Why, when penning his favorite parts of winter, did his first thought turn to chestnuts?

Which brings us to the Columbian Exchange.

What is the Columbian Exchange?

The Columbian Exchange, for those who don’t know, refers to the massive transfer of plants, animals, germs, ideas, people, and more that occurred in the wake of Christopher Columbus’ arrival in the Americas. While a detailed analysis of all the impacts of the Columbian Exchange is far beyond the scope of this piece, from a strictly biological standpoint, it began a fierce evolutionary battle as previously unseen species entered new territory for the first time.

One of the most notable victims of this exchange turned out to be the American Chestnut Tree.

Photo from getarchive.net

For more than 2,000 years, the American Chestnut dominated the mountains and forests of the Eastern United States, allowing adventurous squirrels to travel, according to legend, from Georgia to New England without ever touching the ground or another species of tree. Each year it provided much of the diet for many species, including black bears, deer, turkeys, the (now extinct) passenger pigeon and more. 

The chestnuts, which grew three at a time inside the velvety lining of a spiny burr, contained more nutrients than other trees in the East, making them especially valuable to Indigenous peoples who relied on them as a food source and used them in traditional medicines. Europeans would later use the nuts as feed for their animals, or forage to use them for food or trade. In addition, since the trees grew faster than oak and were highly resistant to decay, the lumber was highly-prized for construction—to this day American chestnut, reclaimed from older buildings, is sometimes used to create furniture.

The chestnuts were, in fact, such a staple that, in the late fall and early winter after the trees had delivered their harvest, city streets would be lined with carts roasting the nuts for sale. They are reported to be richer and sweeter than other varieties of chestnut and were a much sought-after wintertime treat. Today, roasted chestnuts are typically imported, and either European or Chinese chestnuts are used and, if our great-grandparents are to be believed, those species are just not as good. In addition, the loss of the American Chestnut deprived the United States of an important export.

So, What Happened?

After Columbus arrived, a fella by the name of Thomas Jefferson danced into his Virginia home-sweet-home with some European chestnuts to plant at Monticello. Somebody else imported Chinese chestnuts and, before too long, ink disease had practically eliminated the American chestnut in the southern portion of its range.

Then, in 1876, Japanese chestnuts were introduced into the United States in upstate New York and, a few decades later, a blight was discovered at the Bronx Zoo (then known as New York Zoological Park) that, by 1906, had killed 98% of the American chestnuts in the borough. Since Asian chestnuts, and to a lesser extent European chestnuts, had evolved alongside the blight, they were able to survive. But the American Chestnut tree (and its cousin the Allegheny Chinquapin) could not. Over the coming decades the airborne fungus, which could spread 50 miles in a year and kill an infected American Chestnut within ten years, had rendered the American Chestnut functionally extinct.

What Does That Mean, “Functionally” Extinct?

While the American Chestnut may be “functionally” extinct, that is not the same as being extinct. The root systems of the trees in many cases have survived, as the blight only kills the above-ground portion, and the below-ground components remain. Every so often a new shoot will sprout from the roots not killed when the main tree stem died. These shoots are only able to grow for a few years before they are infected with the blight, and they never reach a point of bearing fruit and reproducing, but they do grow. For that reason, the tree is classified as “functionally” extinct, but not extinct. In addition, isolated pockets of the species have been found, or planted, west of the trees’ historical range where the blight has not yet reached.

Will I Ever Get to Eat a Roasted American Chestnut?

While you probably won’t get to have the full roasted chestnuts experience as Robert Wells once did, there is hope for this species and hope that maybe your grandchildren will enjoy them as your great-grandparents once did. Programs at several universities such as the University of Tennessee and the State University of New York along with the USDA, US Forest Service and some non-profits like the American Chestnut Foundation are actively working to bring the species back by either cross pollinating blight-resistant specimens or combining them with more resistant species. You can learn more about these efforts toward resilient chestnuts by exploring the sources below.

Ho ho ho,

Mike


Mike Conway is a part-time freelance writer who lives with his wife, kids, and dog Smudge (pictured) in Northern Virginia. 


Sources:
American chestnut – Wikipedia
Home | The American Chestnut Foundation (tacf.org)
How to grow an American chestnut | US Forest Service (usda.gov)
The Great American Chestnut Tree Revival – Modern Farmer
What it Takes to Bring Back the Near Mythical American Chestnut Trees | USDA
Sowing the Seeds for a Great American Chestnut Comeback | NPR
Uncredited photos in this blog from tacf.org

Featured Creature: Nilgai

Which creature is the largest Asian antelope, considered sacred to some and pest to others?

The Nilgai!

Photo by Hemant Goyal from Pexels

This fascinating four-legged friend could be described by a whole host of leading questions, depending on which notable features we want to emphasize. Elizabeth Cary Mungall’s Exotic Animal Field Guide introduced the nilgai with the question “What animal looks like the combination of a horse and a cow with the beard of a turkey and short devil’s horns?”

Personally, I find the nilgai much cuter than that combination might suggest, but it may all be in the eye of the beholder. The name ‘nilgai’ translates to ‘blue cow’, but the nilgai is really most closely related to other antelopes within the bovine family Bovidae. Mature males do indeed have a blue tint to their coat, while calves and mature females remain tawny brown in color.

Photo by Clicker Babu from Unsplash

As their physiology suggests, nilgai are browsers that roam in small herds, with a strong running and climbing ability. I encountered them in the biodiversity parks of New Delhi and Gurgaon, where efforts to rewild the landscape to its original dry deciduous forest make for ideal stomping grounds for the nilgai. 

Prolific Browsers

Indigenous to the Indian subcontinent, the nilgai is at home in savanna and thin woodland, and tends to avoid dense forest. Instead, they roam through open woods, where they have room to browse, feeding on grasses and trees alike. They’re considered mixed feeders for that reason, and will adjust their diet according to the landscape. Nilgai are adept eaters, standing on their hind legs to reach trees’ fruits and flowers and relying on their impressive stature (which ranges from 3 to 5 feet, or 1 to 1.5 m, at the shoulder) to get what they need.

Photo from Wikipedia
(By Akkida, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=34508948)

Like other large herbivores, nilgai play an important role in nutrient cycling and maintaining the ecosystems they’re a part of. In this case, that looks like feeding on shrubs and trees to keep woodlands relatively open, as well as dispersing seeds through their dung. One 1994 study noted the ecological value of the nilgai in ravines lining the Yamuna River, where the nitrogen contained in their fecal matter can make a large difference in soil quality, particularly in hot summer months. 

These creatures actually defecate strategically, creating dung piles that are thought to mark territory between dominant males. As a clever evasion tactic, these are often created at crossroads in paths through forest or savanna-scape, so that predators may not be able to trace the nilgai’s next steps so easily. 

Photo from Wikipedia (By Bernard Gagnon – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30634949)

Food webs for changing times

The natural predators of the nilgai once included the Bengal tiger and Asiatic lion, as well as leopards, Indian wolves, striped hyena, and dholes (or Indian wild dogs) which sometimes prey on juveniles. However, as deforestation, habitat loss and fragmentation, and development pressures change the face of the subcontinent, the ecological role of the nilgai has become more complicated. While their association with cows, a sacred animal in Hinduism, has widely prevented nilgai from being killed by humans, the relationship between people and nilgai is becoming more contentious. 

Where nilgai lack their traditional habitat to browse, they turn to plundering agricultural fields, frustrating the farmers who work so hard to cultivate these crops. Farmers in many Indian states thus consider them pests, and the state of Bihar has now classified them as ‘vermin’ and allowed them to be culled.  

Photo from Wikipedia (By Jon Connell – https://www.flickr.com/photos/ciamabue/4570527773/in/photostream/, CC BY 2.0)

There’s no place like… Texas?  

Strangely enough, when I got inspired by my nilgai sightings in India and decided to learn more about these Asian antelopes, one of the first search results I encountered involved nilgai populations here in the US. Specifically in Texas, an introduction of nilgai in the 1920 and 30s has spawned a population of feral roamers. Accounts say that nilgai were originally brought to the North King Ranch both for conservation and for exotic game hunting, somewhat distinct priorities that regardless led to the same result, a Texas population that now booms at over 30,000 individuals.

In this locale, nilgai largely graze grasses and crops, as well as scrub and oak forests. Here hunters have no qualms about killing them, but some animal rights groups object, and popular opinion remains divided on whether such treatment is cruelty or, well, fair game. 

These days, one concern is that a large nilgai population contributes to the spread of the cattle fever tick. Another concern remains about these grazers acting as ‘pests’ on agricultural land. 

Fundamentally there is a question that lies at the heart of the nilgai’s fate, both at home in India and Bangladesh, where natural predators and original habitat have steeply declined, and abroad, where they weren’t a part of the original ecosystem at all: what do you do when an animal’s ecological role is out of balance? 

In my view, there are no easy answers, but a familiar pattern we seem to uncover – that healthy ecosystems, where intact, harbor more complexity than we can recreate or give them credit for. Little by little, I hope we can support their conservation and resurgence. 

By Maya Dutta


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. She is the Assistant Director of Regenerative Projects at Bio4Climate.


Sources:
https://animalia.bio/nilgai
https://www.thedailybeast.com/nilgai-the-chimeric-beast-overrunning-texas-and-spreading-disease
https://en.wikipedia.org/wiki/Nilgai
https://www.britannica.com/animal/nilgai

Featured Creature: Luna Moths

What nocturnal creatures native to North America are known for their beauty and the fact that they don’t eat at all in their adult life? 

Luna moths!

Photo by Geoff Gallice, CC BY 2.0, via Wikimedia Commons 

As the movement to restore native biodiversity grows, we are seeing trends like No-Mow May, Leave the Leaves, and pollinator-friendly gardens gain popularity as ways to support the intricate web of biodiversity. Often, part of the campaign for preserving and nurturing these essential soil-plant-insect-animal interactions involves highlighting some of the charismatic creatures who stand to benefit from rewilding efforts. If you are looking for a creature to champion in the work for native biodiversity, look no further than the Luna Moth! 

Photo by Naturelady from Pixabay

When I was little I used to think the woods were magic. I read Enid Blyton’s The Magic Faraway Tree and imagined what fantastical creatures I might meet if I got to wander through the forest. For the most part, my adventures were confined to chasing fireflies in New York City parks, but that was enough to convince me I was onto something. Those lucky enough to meet the tree-dwelling luna moth might agree, because these big bright fluttering beauties would fit right into any fantasy setting. 

The luna moth, or Actias luna, is a species of giant silk moth endemic to North America. It is known for its distinctive shape, green color, and shockingly long wingspan of up to 7 inches! In discussing the biodiversity we are fighting for by restoring landscapes and rewilding our built environment, the lovely luna moth has come up several times for the sheer wonder it brings people. Like a real-life tinkerbell, this intricate insect inspires us with its beauty and shows how much transformation a single individual can undergo in a lifetime. 

While many animals (and particularly insects), can challenge our human perspective of time with their fleeting life spans, the luna moth takes this to new extremes. Not only do adult luna moths live for just a week, but they have a very clear purpose in that time to mate and reproduce. They are so single-minded that they don’t undertake one of the other major activities of the natural world – eating! The luna moth emerges from its cocoon with all the energy needed to carry out its week of mature adult life.

Though it may be brief, the luna moth’s existence, from egg to adult stage, with all the growth and survival that entails, is anything but simple.

A lesson in metamorphosis

Like other moths and butterflies, luna moths undergo a dramatic transformation in their life cycle from their humble beginnings as eggs. After approximately 10 days, they hatch into their larval stage on the underside of the leaves where they were laid. Caterpillar larvae actually undergo several stages of molting in which they grow in size and change in appearance, sporting spots and changing color from a bright green to a darker yellow or orange. They cocoon themselves after several weeks as larvae, entering the pupal stage for 2-3 weeks before finally emerging as the beautiful moths we’ve come to recognize. 

With a name derived from the latin word for moon, these nocturnal creatures can be observed during the evening in late Spring or early Summer, depending on the region. While they range from Canada to Florida in areas east of the Great Plains, the timing and duration of their life cycles vary by location and climate. Indeed, Northern populations of luna moths have just one generation per year, while further South in warmer conditions, they’ve been known to have as many as three generations per year. 

Luna Moth caterpillar (Photo by Benny Mazur, CC BY 2.0 via Wikimedia Commons)

As caterpillars, luna moth larvae feast on the leaves of the trees they call home. They love several species of broadleaf trees, including walnut, hickory, sumac, and sweet gum. While they can be Very Hungry Caterpillars, voraciously consuming leaves to grow, populations of luna moths tend not to reach a density that starts to harm their host plants. Instead, they are a beautiful feature of the ecosystems of trees that they dwell in, and themselves become food for other species, including birds, bats, and some parasitic flies. 

Survival with a flourish

The adult luna moth uses a very special survival strategy to evade bats who are out hunting at night. While their green camouflage might keep them safe from predators relying on eyesight to hunt, they need to try something different to out-maneuver a bat’s echolocation. The long curved tails of the luna moth serve just this purpose. When under pressure from a bat’s pursuit, luna moths spin the frills at the end of their tails, disrupting the vibrations through the air that help the bats navigate and giving moths an essential boost in getting away. These beautiful features offer the moth both form and function.   

Luna moth near Tulsa, OK (Photo by woodleywonderworks, CC BY 2.0 via Wikimedia Commons)

The luna moth is a stunning example of the creativity, elegance, and transience of the natural world. While a single luna moth may not live very long, their impact persists across generations, inspiring naturalists young and old who are lucky enough to catch a glimpse. These creatures are one of many reasons to keep preserving and planting native trees. When we do, living wonders await. 

With that, I’ll flutter off for now!
Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources:
https://www.fllt.org/goddess-of-the-moon-the-life-history-of-the-luna-moth/
https://hgic.clemson.edu/factsheet/luna-moth/
https://en.wikipedia.org/wiki/Luna_moth
https://www.smithsonianmag.com/science-nature/luna-moths-gorgeous-wings-throw-bat-attacks-180954281/

Featured Creature: Whale Shark

What creature is the largest of its kind, sports beautiful patterns, and holds a reputation for being a ‘gentle giant’? 

The whale shark!

Photo by Shiyam ElkCloner (CC BY-SA 3.0 via Wikimedia Commons)

Filter feeding for giants 

The majestic whale shark is famed for being the largest fish in existence. With a length of up to 33 feet and weight up to 20 tons, they are not only the largest living fish, but thought to be the largest fish that ever lived on this planet. Though their name might suggest otherwise, whale sharks are not a type of whale at all, but instead a member of the shark family. It is their enormous size (akin to a school bus) that led them to be compared with whales. 

Like their other shark relatives, these creatures are excellent swimmers and true masters of the deep. People are coming to recognize that all sharks, even carnivorous species that hunt marine mammals, fish, or other invertebrates, have been unfairly mischaracterized as threatening, and whale sharks are another species you need not be afraid of. 

In fact, one of the most fascinating traits of the whale shark is its diet. Despite their own large size, whale sharks subsist on some of the smallest ocean inhabitants, plankton. Much like the enormous blue whale, whale sharks are a living example of one of the most interesting links in the food chain, where nutrients are cycled from microscopic life to macroscopic organisms. 

They filter-feed by opening their mouths and letting plankton-rich waters pass through, as well as ingesting other small fish or unlucky invertebrates along the way. But even in this habit they are unique. Whale sharks use a technique called “cross-flow filtration,” in which particles do not actually catch on the filter (the way it works when we drain pasta through a strainer or breathe through an N95 mask). Instead, water is directed away through the gills while particles move towards the back of the mouth. A bolus (or a spinning ball of food) grows in size as more particles are concentrated, finally triggering a swallowing reflex in the throat. This avoids clogging any filters in the process and is a particularly efficient method of filter feeding. 

Because they are so large, whale sharks need a lot of food to sustain themselves, and so they journey long distances in order to eat enough for their great big appetites. They can be observed throughout the world in warm tropical waters and tend to lead solitary lives. Where there is an abundance of plankton, however, whale sharks are sure to follow. For example, in the Springtime many whale sharks migrate to the continental shelf of the Central West Coast of Australia, where Ningaloo Reef is the site of a great coral spawning that produces water rich with plankton for our giant fishy friends to enjoy.

Photo by Leonardo Lamas from Pexels

Big fish in a complex sea

The whale shark contributes to nutrient cycling throughout its lifespan, providing important benefits to the ecosystems they are a part of. Some of the warm tropical waters that whale sharks call home tend to be low in nutrients and productivity, and in these areas whale sharks can make a big difference due to their size and force. As they undertake migrations or even as they go about daily swimming and feeding activities, their motion stimulates small ocean currents that can help nutrients travel from areas of high productivity to waters where they are much less concentrated. 

Their own eating habits rely on an abundance of microscopic creatures and the nutrients they metabolize, and eventually each mighty whale shark passes on and becomes food itself, returning those nutrients to the ocean food web. After death, whale sharks sink to the ocean floor and the benthic organisms that reside there find food and shelter in the great carcasses. It can take decades for this decomposition to occur, and in the meantime hundreds of creatures benefit from the habitat and nutrients left behind.  

In life as well, whale sharks can provide refuge to smaller species of fish that travel around their great bodies, taking advantage of the shelter these gentle giants create. As largely docile creatures, whale sharks can be quite approachable and playful with divers who are also interested in tagging along: 

In a couple of instances, humans have even pushed their luck so far as to ride along on a whale shark’s back! Such close contact is discouraged by conservationists to protect the personal space of these beautiful animals, but whale sharks’ friendly reputation remains. 

Though they may be steady, generous members of the ocean community, whale sharks are struggling to survive in changing conditions. They are an endangered species, and while some protections for these creatures have been enacted across the coastal waters of the world, they are still hunted for meat, fins, and oil, or captured or killed as bycatch in industrial fishing operations. Whale sharks also suffer from the plastic pollution in our oceans, as microplastics mingle with the food they rely on. Like the rest of us, whale sharks need clean, healthy, abundant environments in which to live and co-create. 

Whale shark in the Maldives (Photo by Sebastian Pena Lambarri from Unsplash)

Unique beauties

Whale sharks may be known for their size, but that’s not the only special thing about their anatomy and appearance. Each whale shark sports a beautiful pattern of white markings on its dark gray back. Not only does this make these creatures look like giant mobile modern art pieces, but the patterns also uniquely identify whale shark individuals.

It is not conclusively determined why whale sharks carry these unique signatures, their own version of the human fingerprint. Some scientists speculate that the patterns, which tend to be common among carpet sharks and other species that find such markings useful for camouflage as they traverse the ocean floor, indicate a close evolutionary link among these organisms.  

The World Wildlife Fund has used these markings to identify individuals in the waters around the Philippines and keep track of whale shark population numbers there, so that humans can make the interventions needed to mindfully coexist with our marine friends. Whatever its distant origin or function today, this feature makes it clear that each whale shark is a special and irreplaceable member of our blue planet. 

For gentle giants and filtering friends,
Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources and Further Reading:
https://www.worldwildlife.org/species/whale-shark
https://www.georgiaaquarium.org/animal/whale-shark/
https://www.nationalgeographic.com/animals/fish/facts/whale-shark
https://en.wikipedia.org/wiki/Whale_shark
https://earth.org/endangered-species/whale-sharks/
https://www.4ocean.com/pages/whale-shark-cause-of-the-month

Featured Creature: European Hamster

"European hamster at a city park" by Ivan Radic is licensed under CC BY 2.0.

Which keystone species creates intricate burrows, is aggressive towards its own kind, and hibernates from October to May? 

The European Hamster!

European hamster at a city park
(Photo by Ivan Radic licensed under CC BY 2.0)

Did you know that there are multiple species of hamster in the wild? I didn’t know this until recently, when I stumbled upon a BBC Earth video of a European Hamster foraging for food in a graveyard. Having only ever been exposed to domesticated hamsters, I was fascinated by this creature and eager to learn more about it. 

Burrow into the Basics

The scientific name for the European Hamster is Cricetus cricetus. These furry creatures have a small, ovalish body covered in reddish-brown fur, with the exception of white fur on their face and the side of their body. Quite small in size, European Hamsters typically weigh about 12 – 15 ounces and are about 8-9 inches in length (just a bit bigger than the average human hand!). 

In terms of geography, this solitary species is native to Central and Eastern Europe, hence its name. They inhabit steppe and grassland regions that are lush with greenery on relatively flat land. 

A Life Well-Lived

The European Hamster has a unique mating process. During the mating season between March and May, females engage in a ritual in which they run in a figure-8 pattern to attract their mate. Males, in turn, will chase the females during this ritual while making a special mating call. 

After successful mating with several males, a female’s pregnancy will last about 18 – 21 days and results in about 3 – 7 hamster pups. Females are the primary caregivers to their pups, as males are relatively hands-off in the upbringing of their young. They typically nurse the pups for about a month, or 30 days. The European Hamster has an impressive lifespan among small rodents – it can live up to 8 whole years!

Settling in for Winter

Hibernation is an important part of the European Hamster’s key to a long life. They typically rest from mid-October to mid-March in a deep (2 meter) underground burrow. During hibernation, they wake up about every week or so to get a quick snack before falling back into rest. 

Their burrows play a vital role in the European Hamster’s daily life. These burrows exist deep in the ground and have a variety of chambers for specific uses, like food storage. 

European Hamster burrow
(Photo by Bas Kers (NL) is licensed under CC BY-NC-SA 2.0)

With a healthy appetite, the European hamster loves to eat grasses, seeds, grains, roots, fruits, legumes, and occasionally some insects or insect larvae. They might often be seen spending the day packing their roomy cheeks full of food to bring back to their food storage chamber to prepare for hibernation. 

A Temperamental Creature

European Hamsters aren’t the most friendly of creatures, possibly least of all towards their own kind. They mark their territory with secretions, and when they come into contact with another member of their species, they may act aggressively. They have also been known to attack humans when approached by farmers, who may view the species as harmful to their agricultural operations. 

European Hamsters deserve particular recognition for their role as a keystone species. They play a crucial role in dispersing seeds throughout the European grassland and steppe ecosystems that they inhabit. They also contribute to the food web by primarily consuming producers (i.e., plants & plant products), and by serving as prey to a host of predators including birds, foxes, weasels, dogs, cats, badgers, and more. 

One Keystone Species Affects the Entire Ecosystem

Unfortunately, this important keystone species is currently critically endangered due to a number of factors. According to Animal Diversity Web, “European hamsters have been hunted or sold for their pelts. They also have been used for cancer research, due to their exposure to pesticides and air pollution in urban settings.”

Luckily, there are rehabilitation and reintroduction efforts underway to protect this valuable keystone species and the ecosystem it helps to support. You can learn more about one such project in Khotyn National Park, Ukraine by clicking here: 

For all keystone species, 
Abby


Abby Abrahamson is a writer, activist, and educator with a passion for community-led biodiversity and climate solutions. As a graduate of sociology and environmental studies, she appreciates the intersectionality of our challenges of climate justice, conservation, and regeneration. Now a Teacher Naturalist with Mass Audubon, Abby formerly worked with Bio4Climate on communications, college outreach, and community engagement. She has also been involved in Jane Goodall’s Roots and Shoots, an organization that helps empower young people to work on environmental, conservation, and humanitarian issues.


Sources:
https://www.animalia.bio/european-hamster
https://en.wikipedia.org/wiki/European_hamster
https://animaldiversity.org/accounts/Cricetus_cricetus
https://www.nationalgeographic.com/animals/article/common-hamster-named-critically-endangered-europe

Featured Creature: Atlas Moth

What creature has no mouth, is known for colorful patterns, and is famous for mimicking a deadly predator?

The Atlas Moth!

Jee & Rani Nature Photography © 2018 (CC BY-SA 4.0 via Wikimedia Commons)

The insect with a reputation

Atlas moths live throughout India, China, Indonesia and Malaysia. This wide distribution covers secondary forests, shrublands, tropical areas, and rainforests. 

The name “Atlas” likely came from the moth’s vibrant, unique patterns that resemble geological formations shown on a map, or atlas. Another theory behind the name comes from Greek mythology. According to myth, Atlas was a Titan who was ordered by Zeus to hold the sky on his shoulders as punishment for rebelling against the gods. A big task like that requires a big titan, so “Atlas” Moth could refer to the large size of this creature. 

The Atlas moth is the largest moth due to its massive wing surface area. Females are larger than males, and they can measure up to 12 in, reaching a surface area of 62 in2 – that’s one huge moth!

The last theory behind the Atlas moth’s name is the Cantonese translation, which means “snake’s head moth,” and that refers to the distinct snake face shape on the tip of the moth’s wings. Can you see it?

The Atlas moth uses this snake head pattern to its advantage. If the moth feels threatened while in a resting position, it will quickly begin flapping its wings to mimic a moving snake head. I’m sure snakes must appreciate the Atlas moth’s methods. After all, mimicry is the sincerest form of flattery.

Max Burger ( Public Domain via Wikimedia Commons )

Gone Too Soon

Sadly, our beloved moth has a short lifespan. After emerging from their cocoons, they live for two weeks. This is just enough time to find a mate and reproduce. Atlas moths are so busy with these two tasks during that time period that they don’t even eat. They depend solely on the energy they stored during their caterpillar, or larva, stage. The moth has so evolved to this fasting lifestyle that it doesn’t even have a mouth! 

To get ready for the moth stage, atlas moth caterpillars will devour citrus fruits, cinnamon, guava, evergreen tree leaves and willow. The caterpillars have their own defense system, too. When threatened, they spray a potent, foul-smelling substance that can reach up to 50 cm. So don’t mess with these caterpillars!

Vinayaraj (CC BY-SA 4.0 via Wikimedia Commons)

How are human activities impacting Atlas Moths?

People throughout the countries the atlas moth lives in admire this creature. In India, their cocoons are used to create a silk called fagara. In Taiwan, local people collect the cocoons and create a variety of products. Purses are made by simply adding a zipper to nature’s design.

Although local communities have been practicing sustainable cocoon-harvesting practices for some time, throughout recent decades the moth itself has been targeted- to be sold alive as a pet, or dead as a display item. Perhaps we can learn from this moth by showing our admiration through mimicry, rather than taking them out of their natural habitat.

Wishfully yours,

Tania


Tania graduated from Tufts University with a Master of Science in Animals and Public Policy. Her academic research projects focused on wildlife conservation efforts, and the impacts that human activities have on wild habitats. As a writer and activist, Tania emphasizes the connections between planet, human, and animal health. She is a co-founder of the podcast Closing the Gap, and works on outreach and communications for Sustainable Harvest International. She loves hiking, snorkeling, and advocating for social justice.


Featured Creature: Poison Dart Frog

pixabay.com

What creature the size of a paperclip is lethal enough to kill ten grown men?

The poison dart frog!

pixabay.com

What makes the poison dart frog so powerful?

Poison dart frogs – so named because the Indigenous Emberá people of Colombia traditionally used the venom in blow darts – are some of the most toxic creatures on Earth. Some carry enough poison to kill ten grown men or to poison 20,000 mice. 

This potent toxicity originally comes from plant poisons that were ingested by the frogs’ insect prey. The effects of this diet, whose repercussions pass from plant to insect to frog to human hunters, shows just how interconnected these ecosystems are. Though it’s not established how the plant poison is processed into venom, when poison dart frogs are bred in captivity and fed a different diet, they do not develop the venom. 

Why are poison dart frogs so colorful?

The poison dart frog uses bright colors and patterns as a warning to predators – do not attack if you wish to live! Various species come in bright yellow, turquoise and black, or strawberry red, and these eye-catching visuals broadcast to predators that they’re venomous and dangerous. 

They use poison in self-defense, not in hunting, excreting venom into their skin when they’re threatened, so that a single touch would be enough to stop a human heart. This is such an effective tool that many species have evolved to mimic the bright colors and patterns of poison dart frogs in order to get some of that protection from predators by association. 

What are other characteristics of poison dart frogs?

They’re tiny! Grown adult frogs typically measure one to two inches, and can be held on a single fingertip (though you wouldn’t want to try this at home).

pxfuel.com

Like all frogs, they’re amphibious, which means they lay eggs that hatch tadpoles, and have permeable skin through which they can absorb water and oxygen. 

How are human activities impacting poison dart frogs?

Deforestation is one of the biggest threats to the poison dart frog. Poison dart frogs are spread across the rainforests of Central and South America. There are over one hundred species of them, and new ones continue to be found! However, habitat loss across these areas, especially in the Amazon, put them at risk of extinction.

Check out this brief look at the life of one golden dart frog:

These bright creatures may be dangerous, but they are just as dazzling. They show that brilliant things can come in small packages.