Featured Creature: Staghorn sumac

What berries grow in crimson towers,
With tangy taste that puckers and sours?

Staghorn sumac! (Rhus typhina)

Staghorn Sumac (By Alicja via Pexels) 

Growing up, the slim outline of the staghorn sumac lined the perimeter of my backyard, reaching out its limbs, dotted with dark red berries. In the bored heat of summer, my brothers and I would grab the plant’s thin trunk and shake, raining berries down on us and gathering as many in our hands and pockets as we could. 

These wide and angular branches give the staghorn sumac its name, resembling the sharp antlers of a deer. And much like the thin, soft velvet that covers young antlers, the staghorn sumac’s stem is lined with a fine velvety layer of hair (or trichomes). In addition to serving as a protective layer from insects and the elements, this fuzz distinguishes the staghorn sumac from its common relative, the smooth sumac. These two plants share quite a few traits, both having pinnate (feather-like leaves) and producing red fruit. However, the smooth sumac, as the name suggests, lacks the fine velvety texture on its stems that characterizes the staghorn.

Budding branch of staghorn sumac (WikiMedia Commons by Krzysztof Ziarnek)

Planting roots

Beyond its striking leaves and vibrant berries, the staghorn sumac has a unique way of multiplying and thriving in the wild.

Growing from a large shrub to a small tree, the staghorn sumac ranges in size from about 3 to 30 feet in height. It is native to the eastern half of the United States and flourishes on the edges of forests, clearings, and dry, rocky, or gravelly soils. 

The staghorn is a colony forming plant, meaning that they cluster in groups of genetically identical clones, connected through an underground network of roots. The plant reproduces new clones via a process known as root suckering, where vertical growths originate from its root system. In addition to producing colonies, the staghorn sumac also naturalizes through self seeding, the dispersal of its own seeds. 

The flowers of a staghorn sumac are crimson, hairy, and bloom through May to July. Berries form tightly pyramidal clusters and are usually ripe by September, persisting into the winter, even after the staghorn sumac has lost its leaves, though this timeline can vary by geography. 

Staghorn sumac in the winter (photo by author)

The staghorn sumac is dioecious, male staghorn sumac and female staghorn sumac flower separately. The female staghorn sumac produces flowers and seed, while the male staghorn sumac only produces flowers. Due to the staghorn sumac’s colony forming habits we just learned about, and while not always the case, groves of predominantly female-only or male-only trees can be found. The colony of staghorn sumacs that grew around my childhood backyard were all seed bearing, and therefore a colony of female-only sumacs. 

Berries and Beyond

The berries produced by the female staghorn sumac hold the same shade of deep red as the flowers, but also have finer hairs and a denser, round body. As children, my brothers and I were convinced that these velvety, red berries were poisonous, and we handled them with a slight air of suspicion. However, despite their vibrant color, the berries lining our pockets were not poisonous.  While brightly colored fruits may have a reputation for being dangerous, many use bright colors to attract different pollinators. In this case, the bright Staghorn sumac berries are an edible fruit that has been used by humans for centuries. They are high in vitamin c and have a strong, tart taste. Upland game birds, songbirds, white-tailed deer, and moose also eat the tree’s leaves and twigs, while rabbits eat even the plant’s bark. 

The staghorn sumac has been utilized by Indigenous peoples in North America for a variety of different purposes—including traditional medicine—over hundreds of years. The fresh twigs of the staghorn sumac, once peeled, can be eaten, and have been used in dishes such as salads. These same twigs, along with the leaves, can be brewed into medicinal tea, traditionally used to relieve post pregnancy bleeding, alleviate respiratory conditions such as asthma, and assist in digestion. In addition, the roots of the staghorn sumac have historically been used for their supposed antiseptic and anti-inflammatory properties.

A common use for sumac berries is to make sumac-aide, a lemonade-like beverage with a strong, tart taste. Sumac-aide has been used for its believed medicinal properties, or simply as a refreshing summer drink. Sumac berries are ready to be harvested and used for culinary purposes during late summer, once they turn dark red in color.

Staghorn sumac (Josveo5a via WikiMedia Commons

The staghorn sumac trees that once grew lush in my childhood backyard are all gone now, leaving an empty patch of dirt in their wake. Although my family does not understand the events that lead to their demise completely, potential disease could be one contributing factor. The staghorn sumac is a resilient tree that is able to flourish under a variety of conditions. However, like all plants, the staghorn sumac is still susceptible to disease. Fungal diseases such as anthracnose, powdery mildew, and root rot, and bacterial diseases such as leaf spot can infect and kill groves of the staghorn sumac. In addition, invasive pests such as Japanese beetles can strip the staghorn sumac by skeletonizing its leaves and damaging flowers. 

Recently, I was walking along an icy boardwalk near my childhood home and noticed little fuzzy flowers, bright red against the white snow. It took me a closer inspection of these cute crimson flowers to notice the large group of staghorn sumac arching above the boardwalk and over my head. The trees bore their rich red flowers despite the other snow encrusted barren trees of the landscape. 

If you know where to look, the staghorn sumac is everywhere, dotting the sides of highways, bike paths, playgrounds, and perhaps even your own backyard.


Helena Venzke-Kondo is a student at Smith College pursuing psychology, education, and environmental studies. She is particularly interested in conversation psychology and the reciprocal relationship between people and nature. Helena is passionate about understanding how communities are impacted by climate change and what motivates people towards environmental action. In her free time, she loves to crochet, garden, drink tea, and tend to her houseplants. 


Sources and Further Reading:

Featured Creature: Lavender

What’s usually purple, but sometimes pink,
and in the summer you might want it in a drink?

Lavender! (Lavandula)

(Image Credit: edededen via iNaturalist)

Already baking in the high desert heat, I rolled up a gravel driveway past yucca and prickly pear cacti to Mesa Verde Lavender, the farm in Mancos, Colorado, where I was to spend my summer living and working. I didn’t know much about the plant other than that it smelled good, tasted a little soapy, and that I was potentially allergic to it (luckily, I was wrong about this one). 

Over the next three months, I would learn a lot about the lavender, how to plant it, care for it, and harvest it. On a lazy mid-June day, when the first buds of the flower had begun to blossom, the most mature field was full of flowers with tiny white buds springing from their stems. It was as if all of the color had been leached from their little buds. That is how I stumbled upon the existence of pink lavender, the Miss Katherine cultivar.

Miss Katherine in Colorado (Photo by Author)

Miss Katherine was the first variety to bloom on the farm, with a blooming period from early June to late August.

Lavender is a genus (Lavandula) of flowering plants known for its beauty and its fragrant oils. Lavender plants typically have long, slender stems with narrow leaves, and their flowers are generally in shades of purple, blue, or violet—though when I first laid eyes on them in Colorado, they were a dusty white. And while they certainly taste different, Lavender is in great aromatic company as part of the mint family (Lamiaceae), sharing several biological traits with its “fresh” relative like square stems and opposite leaves. 

Originating in the Mediterranean, Lavender prefers hot sunshine and more alkaline, or basic, soils (less acidic clay soils with a higher pH), making them strong and hardy plants, perfect for the high altitude desert farm in Colorado where I worked with them.

Bees?

Trendy chefs and mixologists aren’t the only ones working lavender into their meals. The plant’s flowers are rich in nectar and pollen, making them highly attractive to pollinators like bees and butterflies too. These pollinators are critical allies in the lavender’s reproductive process, transferring pollen between flowers to facilitate fertilization. Lavender flowers typically bloom during the summer, providing an important food source for pollinators and other feasting friends. 

Now, lavender plants can self-pollinate. But they thrive with the help of birds, bees, the wind, and others to spread their pollen to other, genetically diverse, lavender. And although many insects interact with lavender, none do it quite like bees. Interestingly, not all bees contribute equally; some species engage in what is known as “nectar robbing,” or extracting nectar without transferring pollen. But not the bumblebee. These highly efficient pollinators use their long tongues to access nectar more effectively, enabling them to forage lavender three times faster than honeybees. That’s good news for the bee. And their fuzzy bodies collect and transfer pollen efficiently between flowers, promoting successful cross-pollination. That’s good news for the lavender. 

There’s no denying it – lavender has a delicate aura about it. It’s decorative. It embellishes carefully plated meals. It’s a favorite of nearly every kind of scented product you can think of. But don’t let that image fool you. It’s one tough cookie, and this was something that really fascinated me when I dug into learning about the plant. I see it a little differently now. Lavender has evolved several adaptations that allow it to thrive in harsher environments. It is drought-resistant and capable of surviving in well-drained soils with low fertility. The plant’s deep, robust root system enables it to pull moisture from the soil, even in periods of low rainfall. It’s this ability to endure dry conditions that makes lavender well-suited for Mediterranean climates, where hot, dry summers are kind of the norm. 

(Photo by Irina Iriser via Pexels)

Essential Oils

During the Colorado harvest, my fingers grew stickier with each strike of the scythe against the plant’s stems. A delicious-smelling substance that oozing from within the lavender and onto my hands. This was the essential oil. 

Essential oils are concentrated compounds extracted from plants, and they tend to capture each plant’s unique scent and natural chemical properties. They’re commercially valuable in numerous human applications, including aromatherapy, skincare, and medicinal and culinary uses.

Miss Katherine hanging to dry (photo by author)

Essential oil is present in all parts of the lavender plant, including the leaves, buds, and stems (hence my sticky hands).

The Miss Katherine lavender is the most commonly used lavender variety for essential oil production, due to its low camphor content. Camphor is a naturally occurring compound in essential oils with a bitter taste and strong smell—not something you’d want on your plant or in your candle. Other lavender varieties, such as Lavandula stoechas and Lavandula lanata, have higher camphor levels, making them better suited for natural bug repellents and other less cosmetic or edible applications.

Scientists still don’t fully understand the natural purpose of essential oils in plants. Some oils are thought to be byproducts of metabolic processes, while others could play a role in defense against disease and predators. Lavender plants are thought to be allelopathic—capable of releasing chemicals that inhibit the growth of surrounding plants. This can help lavender outcompete invasive species. But on the flip side, planting lavender in an environment where it doesn’t belong can lead to inhibition of native plants and, ultimately, a loss of biodiversity. 

Lavender distilling (photo by author) 

After the harvest, bundles of lavender are hung upside down to dry for a couple days, after which the buds are stripped from the stems, contained in jars, and sent out to market. At Mesa Verde Lavender, the farm delivered a mixture of Miss Katherine, Provance, and Royal Velvet to a local ice cream shop, where the lavender was whipped into delicious gourmet ice cream and served to the community of Durango, Colorado.  


Helena Venzke-Kondo is a student at Smith College pursuing psychology, education, and environmental studies. She is particularly interested in conversation psychology and the reciprocal relationship between people and nature. Helena is passionate about understanding how communities are impacted by climate change and what motivates people towards environmental action. In her free time, she loves to crochet, garden, drink tea, and tend to her houseplants. 


Sources and Further Reading:

Featured Creature: Kingfisher

What creature often looks blue, but isn’t, is found on every continent but Antarctica, and inspired a train’s design?

Kingfishers! (Alcedinidae)

 Patagonian Ringed Kingfisher, Megaceryle torquata ssp. stellata
(Image Credit: Amelia Ryan via iNaturalist)

Kingfishers are kind of like snowflakes. They both float and fly through the air, and no two are really alike. It’s what I love so much about them. Each kingfisher presents characteristics unique to their own lifestyle. They make me think of people. Like kingfishers, we live almost everywhere on Earth and we’ve all adapted a little differently to our diverse environments. I hope as you get to know the kingfisher, you’ll start to feel a small connection to these birds as I have.

Kingfishers are bright, colorful birds with small bodies, large heads, and long bills. They’re highly adaptable to different climates and environmental conditions, making them present in a variety of habitats worldwide. Many call wetland environments like rivers, lakes, marshes, and mangroves home. Now, their name might lead you to think all kingfishers live near these bodies of water, but more than half the world’s species are found in forests, near only calm ponds or small streams. Others live high in mountains, in open woodlands, on tropical coral atolls, or have adapted to human-modified habitats like parks, gardens, and agricultural areas.

Even so, you’re most likely to spot them in the tropical regions of Africa, Asia, and Oceania, but they can also be found in more temperate regions in Europe and the Americas. Some species have large populations and massive geographic ranges, like the Common Kingfisher (Alcedo atthis), pictured above, which resides from Ireland across Europe, North Africa and Asia, as far as the Solomon Islands in the Pacific. Other kingfishers (typically insular species that evolved on islands) have smaller ranges, like the Indigo-banded Kingfisher (Ceyx cyanopectus), which is only found in the Philippines.

Birds of a Feather

Kingfishers are small to medium sized birds averaging about 16-17 cm (a little over 6 inches) in length. They have compact bodies with short necks and legs, stubby tails and small feet, especially in comparison to their large heads and long, pointed bills. While many species are proportioned the same way, some are quite distinct. Paradise Kingfishers (Tanysiptera), which are found in the Maluku Islands and New Guinea like the one pictured below, are known for their long tail streamers. The African Dwarf Kingfisher (Ispidina lecontei) is the world’s smallest kingfisher at just 10 cm (barely 4 inches) long, and is found in Central and West Africa. The largest is the Laughing Kookaburra (Dacelo novaeguineae), coming in at a whopping 41-46 cm (15-18 inches) long, and is native to Australia.

Now, I know what you’re thinking: ‘Wait, are kookaburras and kingfishers the same thing? Sometime. Out of all 118 species, only four go by the name kookaburra: the Laughing Kookaburra (Dacelo novaeguineae), the Blue-winged Kookaburra (Dacelo leachii), the Spangled Kookaburra (Dacelo tyro), and the Rufous-bellied Kookaburra (Dacelo gaudichaud). Native to Australia and New Guinea, the kookaburra are named for their loud and distinctive call that sounds like laughter. Sometimes their cackles can even be mistaken for monkeys!

So,  are they as colorful as everyone says?

Yes! If you ask anyone who has seen a kingfisher to describe what it looks like, they will most likely go on and on about its color. Kingfishers are bright and vividly colored in green, blue, red, orange, and white feathers, and depending on the species, can be marked by a single, bold stripe of color. These features all accent the bird’s most recognizable feature, which is the blue plumage on their wings, back, and head. But here’s where things get interesting: Kingfishers don’t actually have any blue pigment in their feathers.

So, what gives? It’s something called the Tyndall effect. What’s happening is that tiny, microscopic keratin deposits on the birds’ feathers (yes, the same keratin that’s in your hair and nails) scatter light in such a way that short wavelengths of light, like (you guessed it) blue, bounce off the surface while all others are absorbed into the feather.

It sounds a little strange, but you see it every day. It’s why we see the sky as blue, too.

Azure Kingfisher, Ceyx azureus (Image Credit: David White via iNaturalist)

Are kingfishers Really Kings of Fishing?

Yes! And no. Kingfisher species are split into three subfamilies based on their feeding habits and habitats: the Tree Kingfishers (Halcyoninae), the River Kingfishers (Alcedininae), and the Water Kingfishers (Cerylinae). Despite their name, many of these birds primarily prefer insects, taking their prey from the air, the foliage, and the ground. They also eat reptiles (like skinks and snakes), amphibians, mollusks, non-insect arthropods (like crabs, spiders, scorpions, centipedes, and millipedes), and even small mammals like mice.

Tree Kingfishers reside in forests and open woodlands, hunting on the ground for small vertebrates and invertebrates. River Kingfishers are more often found eating fish and insects in forest and freshwater habitats. Water Kingfishers, the birds found near lakes, marshes, and other still bodies of water, are the fishing pros, specialize in catching and eating fish, and are actually the smallest subfamily of kingfishers, with only nine species.

Because the diets of kingfishers vary, so does the size and shape of their bills. Even though all species have long, dagger-like bills for the purpose of catching and holding prey, those of fishing species are longer and more compressed while ground feeders have shorter and broader bills that help them dig to find prey. The Shovel-billed Kookaburra (Clytoceyx rex) has the most atypical bill because it uses it to plow through the earth looking for lizards, grubs, snails, and earthworms. 

Shovel-billed Kookaburra, (Clytoceyx rex) 
(Image Credit: Mehd Halaouate via iNaturalist)

Can the blue-but-not-really-blue kingfisher get any more interesting? 

Oh yes, yes it can. Ready for another physics lesson? Kingfishers have excellent binocular vision, which means they’re able to see with both eyes simultaneously to create a single three-dimensional image, like humans. Not only that, but they can see in color too! But what makes them so adept at catching fish is their capability to compensate for the refraction of light off water.

When light travels from one material into another (in this case, air into water), that light will refract, or bend, because the densities of air and water are different. This makes objects look as though they are slightly displaced when viewed through the water surface. Kingfishers are not only able to compensate for that optical illusion while hunting, but they also can accurately judge the depth of their prey as well. 

But, triangulating underwater prey is only half the battle. Then you’ve got to catch it.

Fishing species of kingfishers dive no more than 25 cm (10 inches) into the water, anticipating the movements of their prey up until impact. Again, what happens next differs depending on which kingfisher we’re talking about. Many have translucent nictitating membranes that slide across their eyes just before impact to protect them while maintaining limited vision. Others, like the Pied Kingfisher (Ceryle rudis leucomelanurus), actually have a more robust bony plate that slides out across its eye when it hits the water—giving greater protection while sacrificing vision.

Pied Kingfisher in action

Kingfishers usually hunt from an exposed vantage point, diving rapidly into the water to snatch prey and return to their perch. If the prey is large (or still alive), kingfishers will kill it by beating it against the perch, dislodging and breaking protective spines and bones and removing legs and wings of insects. The Ruddy Kingfisher (Halcyon coromanda) native to south and southeast Asia, removes land snails from their shells by smashing them against stones on the forest floor.

Learning from kingfishers

Occupying a place fairly high in their environments’ pecking orders (trophic level) makes kingfishers susceptible to effects of bioaccumulation, or the increasing concentration of pollutants found in living things as you climb the food chain. This phenomenon, coupled with the kingfisher’s sensitivity to toxins, makes the bird a fairly reliable environmental indicator of ecosystem health. If a kingfisher population is strong, that can indicate their habitat is healthy because the small aquatic animals they feed on aren’t intaking poisons or pollutants. When problems are detected in a kingfisher population, it can serve as an early warning system that something more systemic is wrong.

But that’s not the only thing we can, or have learned, from kingfishers. In 1989, Japan was looking for a way to redesign its Shinkansen Bullet Train to make it both faster and quieter. As the train flew through tunnels at 275 km/h, massive amounts of pressure would build up, reigned in by the front of the train and the tunnels’ walls. Upon exiting the tunnels, that pressure would release, sending roaring booms through the homes of those living nearby. Engineer Eiji Nakatsu was not only the project’s lead, but birdwatcher as well. Noting the kingfisher’s ability to plunge into dense water at incredible speeds with hardly a splash, Nakatsu and his team remodeled the front of the train with the bird’s beak in mind. The result not only solved the problem of the boom, but also allowed the train to travel faster while using less energy.

Kingfishers: A Little More Like You Than You Think

In learning  about the kingfisher, I saw a little bit of us. We all come from the same family, even if we each do things a little differently.  I think for me, this gets to the root of why finding our connections with all living things matters, not just because they give us inspiration to solve human problems or because we depend on them to keep natural systems in balance, but because this is just as much their Earth as ours. 

Let’s do our part,

Abigail


Abigail Gipson is an environmental advocate with a bachelor’s degree in humanitarian studies from Fordham University. Working to protect the natural world and its inhabitants, Abigail is specifically interested in environmental protection, ecosystem-based adaptation, and the intersection of climate change with human rights and animal welfare. She loves autumn, reading, and gardening.


Sources and Further Reading:

Featured Creature: Mouse-ear cress

What plant was the first to flower in space and is the most widely used model species for studying plant biology?

Arabidopsis thaliana (Mouse-ear cress)!

Mouse-ear Cress, Arabidopsis thaliana (Image Credit: Brendan Cole via iNaturalist)

If you’re a regular reader of Bio4Climate’s Featured Creature series, you might be wondering why I wrote the scientific name of this organism first, rather than its common name. Arabidopsis thaliana (also known as mouse-ear cress, thale cress, or rock cress) is, in fact, recognized by its scientific name more often because it’s one of the most popular organisms used in plant studies and has become the model system of choice for researchers exploring plant biology and comparative genomics. In fact, it’s often dubbed the “white mouse” of the plant research community, making its common name something of a double entendre.

A. thaliana is a small plant with a basal rosette of leaves (a circular or spiral pattern near the base of a plant) that grows up to 9.5 inches (25 cm) in height, and small white flowers that give the plant its name. Mouse-ear is a member of the Brassicaceae (Brass-si-case-see), or mustard, family, which includes plants like —you guessed it— mustard, along with cabbage, broccoli, brussels sprouts, and radish. While A. thaliana is indeed edible like these more economically important crop plants, its capacity as a spring vegetable is not the reason for its fame. More on that story in a minute.

Native to Eurasia and Africa and naturalized worldwide due to human disturbance, A. thaliana is often found by roadsides and other disrupted (or man-made) environments. You have most likely walked by this cruciferous plant without even realizing it. To many, it’s just another weed (though it’s not actually a weed). A. thaliana is widely distributed in habitats with bare, nutrient-poor soil and rocky areas where other plants struggle to establish, needing only air, water, sunlight, and a few minerals to complete its short six-week life cycle. As a self-pollinating plant (selfer), it can also produce seeds without external pollinators. These characteristics help A. thaliana colonize those barren or disturbed areas, making it a pioneer plant—those hardy plants that pave the way and help initiate the development of a plant community.

What makes Arabidopsis thaliana so important in plant research?

Arabidopsis thaliana’s popularity as a leading research organism really exploded when its genome was fully sequenced in 2000. With relatively fewer base pairs of DNA and around 25,000 genes (other plants can have upwards of 30,000-45,000), the plant’s genetic simplicity —paired with its short life cycle— allows researchers to conduct experiments and analyze how specific genes influence development, physiology, and reproduction. Due to the volume of work being focused on the plant since its genome sequencing, A. thaliana is genetically well-characterized, and it’s become an important model system for identifying genes and their functions.

An invaluable effort supporting this research is The Arabidopsis Information Resource (TAIR). The online database offers open access to gene sequences, molecular data, and research findings, fostering collaboration and accelerating discovery. The Nottingham Arabidopsis Stock Centre (NASC) complements TAIR by maintaining the world’s largest seed collection for A. thaliana. With more that one million seed stocks and distribution networks spanning 30 countries, NASC ensures that scientists have ready access to the genetic material they need to push plant science forward.

Arabidopsis thaliana cultures in agar medium (Image Credit: Laboratoire Physiologie Cellulaire & Végétale: LPCV, or Cellular & Plant Physiology Laboratory)

The plant’s limited space requirements and ability to produce high quantities of seeds and specimens assists in repeated and efficient genetic experiments.

Adept at Adapting

When you think of plants and flowers, words like “fragile” or “delicate” often come to mind. While this may be true, nature is much stronger and more resilient than people first assume. A. thaliana is a prime example of how a small, seemingly weak-looking plant can, in fact, adapt well and keep itself alive. As a plant living in the natural world, A. thaliana has a range of defense mechanisms available to protect against herbivorous insects. Many unique samples of A. thaliana have leaves covered in trichomes, which are bristle-like outgrowths on the outer layer of the plant, that ward off moths and flea beetles. When A. thaliana’s plant tissue is damaged, special compounds call glucosinolates interact with an enzyme, producing toxins that deter most would-be attackers. Studying these Arabidopsis-insect interactions can provide crucial information on mechanisms behind traits that may be important for other plant species.

Using A. thaliana as a research tool has applications for larger, more complex crops. It has furthered our understanding of germination, aspects of plant growth, and been a key to identifying a wide range of plant-specific gene functions.

While A. thaliana has helped form the foundation of modern plant biology, its research informs areas outside strictly plant science as well, including air and soil quality from a public health perspective. A. thaliana can be used as an environmental monitor by tracking its exposure and reaction to different pollutants. This small plant also plays a part in biofuel production and space biology.

Arabidopsis thaliana grown in lunar soil
Image Credit: Tyler Jones via NASA

Did you say space biology?

Yes, I did! Arabidopsis thaliana was the first plant to flower in space in 1982 aboard the Soviet Salyut 7. Due to its research value, to this day is it one of the most commonly grown plants in space. While it’s not a viable source of food, discoveries made using A. thaliana provide insights that can be applied to a variety of other plants. In the inhospitable environment of space, researchers deploy advanced plant habitats (APHs) with automated water recovery, distribution, atmosphere content, moisture levels, and temperature to assess how A. thaliana’s gene expression and plant health changes in space. When the plants are mature, the crew will freeze or chemically fix samples to preserve them on their journey back down to Earth for further study. Experiments to understand how space affects A. thaliana’s growth and development are key to learning how to keep plants flourishing in space and, some day, help promote long-duration missions for astronauts.

Nature’s little secrets

Nature can be found in the most improbable of places. Yesterday, A. thaliana was just a weed, one of the countless others blooming in places we’ve made natural life nearly impossible. Along a busy road or in the cracks of an aging sidewalk. I’ve stepped over it and driven by it every day without thinking twice.

Today, it’s a rugged little plant growing in some of the most unlikely or inhospitable places, not the least of which is about 250 nautical miles above our heads. A. thaliana’s relatively simple and unremarkable nature is precisely what makes it valuable to science, acting as a sort of legend to help researchers study other plants. It makes me wonder what other of nature’s secrets I pass every day, hidden in plain sight.

Remembering to appreciate those little plants growing on the sidewalk,

Abigail


Abigail Gipson is an environmental advocate with a bachelor’s degree in humanitarian studies from Fordham University. Working to protect the natural world and its inhabitants, Abigail is specifically interested in environmental protection, ecosystem-based adaptation, and the intersection of climate change with human rights and animal welfare. She loves autumn, reading, and gardening.


Sources and Further Reading:

Featured Creature: Cheatgrass

What plant plays an important role in the grasslands of its native hemisphere, but alters soil moisture and fire regimes when introduced in North America?

Cheatgrass (Bromus tectorum)!

Mature cheatgrass, Bromus tectorum
Michel Langeveld (CC via Wikimedia Commons)

A cheatgrass seed had needled its way into my skin again. I thought that I had freed myself of the cheatgrass when I came back east, to the land of ample water and broad leaves, and threw all of my camping gear into a dark corner of my bedroom. This was not so – it was hiding out in my sock drawer. When I pulled up my socks, I dragged the pointed tips of the cheatgrass seeds up my ankles, and I was once again somewhere out west, nursing the delicate white surface wounds that they left. I was, for the first time, not grateful for the tight warmth-trapping weave of my wool hiking socks – it is highly adept at locking the lance-like grass seed into a comfortable chamber from which it can prod at my ankles. The cheatgrass survived the washer and the dryer and my prying fingernails, survived my desperate attempts to wrench it out of my socks and into the campfire. Cheatgrass burns fantastically well– it’ll ignite from marshmallow-toasting-distance and beyond. 

My cheatgrass came with me from Wyoming months ago. Out there, it rolled for miles across the sagebrush steppe, slowly but surely creeping into every space between every shrub. The site where I gathered the seeds into my socks smelled more of earth than sagebrush, which was unusual for the basins where I’d been working. My boss Rachel and I hopped down out of our work truck and took in our site: some sagebrush, sure, but only a few dashes of it scattered between rolling hills of crisp, flame-red cheatgrass. The site was nearly silent; I found myself missing the usual distant whirrr of farm machinery and the cacophonous cry of a startled sage grouse. We were instead accompanied by the whistling of wind and the knowledge that we would be blowing dust into our handkerchiefs for a few days.

“Downy Brome”

Some call cheatgrass “downy brome”, which is a perfect term for it in the early spring when it hasn’t grown into its wretchedness. In early spring, when its long awns have not yet grown stiff and sharp, it is a soft and elegant plant. Its leaves fall in a gentle cascade from the long stem. The downy brome rolls over hillsides and whispers to its sisters in the breeze; as they dry in late summer, the wind knocks the heads of their seeds against one another, and they are scattered to the ground to start their cycle anew. When the cool season rains end and they’ve sucked up all the water they can from the parched earth, their chloroplasts finally falter, and the grass turns a faint purple-red from the awn-tip up. In spring, the dusty green tones of the sagebrush and the brightly-colored grass dapple the landscape. By summer, the sagebrush is nearly overtaken by an orange-brown, foreshadowing the fire which cheatgrass so often fuels. The grass sticks its seeds through your shoes and between your toes and into your socks and the hems of your pants. It doesn’t matter if you stop to pull them out– you will have just as many jabbing and nudging away at you after you walk another ten feet through their swaying abundance. It is useless to shake them out, too. You must pull them, piece by piece, out of your hair and your tent and your boots, and cast them to the ground. This is just what they wish for– you are seeding them for next year.

A rugged invader

Humans introduced cheatgrass to the Northeastern United States by accident sometime around 1860. You can find it in many places around New England, but in the presence of such an overwhelming amount of water, it often fails to compete with its fellow grasses and is relegated to cracks in sidewalks and highway islands full of compacted, inhospitable soil. Cheatgrass seems lost on this coast; few in the East know what it is or why it’s here. It is a plant surviving as plants do, regardless of the “invasive” status we’ve thrust upon it. In the West, however, its success is something wicked and wonderful.

Any water from the winter’s snowmelt or early spring rains gets sucked up by the eager roots of the cheatgrass, leaving little for the still-sprouting native grasses, forbes, and shrubs, even as their taproots probe deep into the earth. Ecologists curse the plant for its brutal efficiency in driving out those native to the arid steppe; birders lament the loss of woody habitat for their feathered favorites; ranchers sigh at the sight of yet another dry, nutritionally-deficient plant that even their toughest cow is loath to graze. And there is, of course, the fire. Cheatgrass dies and dries in the early summer, long before native grasses do, providing an early fuel source for the ever-lengthening fire season. 

Cheatgrass seeds
Jose Hernandez, USDA (Public Domain via Wikicommons)

The seeds lie in wait in the earth, and in the spring, they unfurl their new leafy heads and emerge from between blackened sagebrush branches. In the grass’s native range in Europe and Southwestern Asia, the plant is no worse or better than any other; it just is. Moths and butterflies lay their eggs along its edges. Ungulates nibble it slowly as their eyes each search opposite directions for the next snack.

Nearly all of the existing research on the plant explores its role far from home, in the United States. It is grass, and it would be hard to imagine that here on the other side of the world, some field tech is cursing its very existence. You’d never know from looking at the cheatgrass that ranchers and federal scientists alike have spent years dousing their own lands in herbicides with the hope of its extirpation. We humans have of course played our role in keeping the cheatgrass strong even as we try to drive it out, since cheatgrass, like many invasives, is far better at taking over already-disturbed soils where the native plant communities and biological soil crusts have been weakened. As extreme wildfires, agricultural use, overgrazing, and the general ravages of climate change continue to impact larger and larger regions, so too does the invasive capacity of the cheatgrass.

 I wore a different pair of socks hiking that day for fear of bringing more cheatgrass to Connecticut. It was silly, though; the cheatgrass already knows this land well. 

Jasmine


Jasmine Gormley is an environmental scientist, writer, and advocate from New Hampshire.  She holds a BS in Environmental Studies from Yale, where she conducted research in plant community ecology and land management. She aims to obtain a degree in environmental law. As a first-generation college student, she is passionate about equity in educational and environmental access, and believes that environmental justice and biodiversity conservation are often one and the same. In her spare time, you can find her rock climbing, foraging, and going for cold water swims.


Sources and Further Reading:

Featured Creature: Iberian Hare

What athletic creature can reach speeds of 45mph and cool itself down with large ears – all in a 2.5 kg frame? 

The Iberian hare (Lepus granatensis)!

Image Credit: Juan Lacruz (CC BY-SA 3.0 via Wikimedia Commons)

Five times the size of New York’s Central Park, Casa de Campo (literally, “country house”) outside Madrid is filled with rustic stone pine trees – emblematic of the Mediterranean and easily identified by their bare trunks and full, blooming crown of pine needles. It’s sometimes called the “umbrella pine” for good reason. Above, within, around, and beneath these trees, nearly 200 species of vertebrates live. 

Out for a run through the park, my feet pounded the dry dirt along a gradual decline for the last mile. Here, the earthen trail dipped down steeply and cut through dense brush. As I dropped in, I almost landed squarely on top of what appeared to be a large rabbit. To my surprise, it didn’t dart away; I think I was more startled than it was. You see, I’d set out on that run in part to find inspiration, follow my curiosity, and think of a creature I wanted to learn more about. I’m not such a strong believer in fate, but this rabbit (or so I thought at the time) had certainly made its case. 

I lingered and watched it mill around the brush. The more I watched, the more I wondered about its story. 

A Keystone Species On The Iberian Peninsula

The Iberian hare (Lepus granatensis) is endemic, or native, to the entire peninsula that contains Spain, Portugal, and the enclave nation of Andorra. Throughout that region they can be found in diverse habitats including dry Mediterranean scrublands, woodlands, and agricultural fields. It thrives in regions with ample vegetation that offer cover and food, adapting well to the peninsula’s varied landscapes, which range from dry, hot areas to slightly cooler, temperate zones. In some respects, Casa de Campo itself is a microcosm of these environments.

Lepus granatensis is a keystone species, meaning it occupies an essential link in the ecosystem’s food chain and plays a particularly outsized role in balancing its environment. It survives on a diet of grasses, leaves, and shoots, playing a crucial role in seed dispersal and vegetation control – and is a source of prey for a range of birds and mammals. The hare’s diet and grazing habits help control plant overgrowth and support a diverse plant community, evidenced in Casa de Campo by the more than 600,000 plant specimens found in the park alone.

The open ground this hare navigates every day is patrolled by animals who want to eat her– lynx, coyote, and red foxes from the land and eagles, owls, hawks, and red kites from the air. To get from point A to point B she must be fast, and she is. Powerful hind legs propel Lepus granatensis to top sprinting speeds of 45-50 miles-per-hour, making her one of the fastest land animals on the peninsula. It’s a pace that puts my nine-minute mile to shame, and is an essential adaptation to survive here, far from the relative safety of dense forest or lush meadow. 

       Casa de Campo, a 4,257 acre park on the edge of Madrid, boasts more that 600,000 plant specimens and nearly 200 species of vertebrates.
Image by author, who was apparently far too busy taking pictures instead of running while on his run.

Nature’s Air Conditioning

When I first started coming to Madrid, adapting to the sparing or non-existent use of air conditioning in the summer was an adventure, to say the least. I can do without the Chipotle and readily available iced coffee, but having been raised on A/C since I was born, it took some getting used to. Unlike me in this regard, the hare I ran into that day is well suited to her environment. It is one of large, open landscapes dotted with thick low lying brush, olive trees, holm oaks, and pines. Rainfall is infrequent, and summers are scorched by the strong Spanish sun. 

Her ears are larger and thinner than those of a rabbit. They often stand upright. When backlit, one can easily make out a network of veins and arteries, traversing the ear like rivers and streams through a watershed.

An unidentified leporid (family of rabbits and hares) displaying the network of arteries and veins that help transfer heat from warm blood to the surrounding air, keeping her cool.
Image by author.

Therein lies her secret. Hares don’t perspire like you and me– nor do they pant like a canine. Instead, they depend on their large, thin-skinned ears to act as thermostat and air conditioner. No, they don’t flap them like a paper fan. Instead, they help her cool down by getting hotter.

When the hare needs to release excess heat, she can expand that network of blood vessels in her ears, allowing her to redirect hot blood away from her body and through the thin skin of her ears. Because her ears have a large surface area putting those veins in closer contact to the ambient air, this increased blood flow facilitates the dissipation of heat into the ever so slightly cooler surrounding air, helping her regulate her body temperature effectively.

We see this strategy of counter-current thermoregulation in nature again and again, in the ears of elephants and deer, and a variation in the snow and ice-bound paws of the arctic fox.

Thermal imaging demonstrating how heat retention and dissipation in rabbits is concentrated through the ears. Image credit: V. Redialli, et al., 2008
This thermal video clearly illustrates the
heat disparity between a rabbit’s ears, and the rest of its body.

Confronting a Microscopic Threat

Before I continued my run, I fired off a few observations to a zoologist friend of mine for help with the species identification. Among them was what we suspected to be a bad case of conjunctivitis in both eyes; significant levels of swelling and discharge were present. 

While neither of us can offer a certain diagnosis for this particular hare, further research has indicated that something more serious is afoot.

In 1952, France was well into its post-war reconstruction, buoyed along by a growing economy and population. As the country was just beginning a new chapter in its story, so too was recently retired physician Dr. Paul-Félix Armand-Delille. In his new-found free time, Armand-Delille took up great interest in the pristine care and management of the grounds of his estate, Château Maillebois, in the department of Eure-et-Loir, a little more than 100km west of Paris.

Troubled by the presence of wild European rabbits (Oryctolagus cuniculus) on his property, Armand-Delille read about the success Australian farmers had found using strains of the myxoma virus to control invasive rabbit species on that continent (they’d been imported by an Englishman decades earlier). Using his old medical connections, Armand-Delille secured some myxoma virus for himself and intentionally infected and released two of the rabbits on his property, confident that they would not be able to leave it. 

Armand-Delille’s Château Maillebois today.
Image credit: Marcengel (CC BY-SA 3.0 via Wikimedia Commons)

In just one year, nearly half of all wild rabbits in France would be dead, consumed by myxomatosis, the disease caused by the myxoma virus. In the decades since, the disease has ravaged Oryctolagus cuniculus populations across Europe, shrinking their numbers to just a fraction of what they were at mid-century. The sudden, near overnight disappearance of the European rabbit also crippled populations of its specialist predator, the Iberian lynx (Lynx pardinus). With the lynx unable to replace the rabbit in its diet, the species was pushed to the brink of extinction. Recent conservation efforts have helped recover and stabilize populations, but Lynx pardinus remains a “vulnerable” species. 

Fortunately, over just the last few decades some populations of the European rabbit have resurged, having developed strong resistance to the virus.

But viruses are always trying, though usually failing, to jump from one host species to another. As species migrate and habitats converge, a virus gets more and more chances to make the leap.

As early as 2018, myxoma succeeded in making the leap from Oryctolagus cuniculus to Lepus granatensis. The virus that causes myxomatosis has wreaked havoc on Iberian hare populations on the peninsula; a species that did not have the advantage of decades and decades of exposure to build up resistance. Myxomatosis can cause fever, lesions, lethargy, and, it turns out, severe swelling and discharge around the eyes. Sometimes these symptoms can subside. But for the Iberian hare the virus is remarkably lethal, with a mean mortality rate of about 70%. Data indicates that since 2018, the virus has decimated Iberian hare populations. This break in the chain has serious implications for both the vegetation the hare keeps in check and the predators that depend on the hare as prey – implications that we are only beginning to understand.

The impact of myxomatosis outbreaks on Iberian hare populations after the 2018 species jump event. Image credit: Cardoso B, et al.

As a warming world continues to heat Iberia, the delicately balanced ecosystem Lepus granatensis inhabits is increasingly jeopardized. More intense storms flood the parched terrain while stifling heat and wildfires threaten vegetation. Lepus granatensis is likely to migrate north in search of more tolerable environments that can sustain the plant life it depends on for both food and cover. The further north the hare goes, the more its new habitat will overlap with the European rabbit and other species. The future of large populations of Lepus granatensis in the face of this disease and increasing climate fallout is uncertain. Since returning to Casa de Campo, I’ve noticed the swelling and discharge in other leporids as well.

Lepus granatensis
Image credit: JoseVi More Díaz (CC-BY-NC-ND)

Complexity

This isn’t the story I set out to tell. When I stumbled on the hare, I expected to write an essay about reconnecting with nature as I embarked on my own new journey as part of the Bio4Climate team. 

Transitioning from a place of hope and curiosity, to understanding the more dire situation faced by both the hare I crossed paths with and the species as a whole was deflating. Yet, that’s all part of nature’s complexity; we don’t always get the happy endings we want. To some extent, these aren’t our stories to write. But even that conclusion is built around a false premise, because none of these stories are over. 

The recent outbreak has prompted renewed research interest into threats facing hare populations. And even if we distill the bigger story down to this specific hare, I don’t know what will become of her. No, the odds aren’t great. But in the time that I watched her she simply carried on, foraging away in the brush. It’s a small thing to observe, but I think there’s hope in that— in identifying the struggle and the resilience of living things, and channeling that understanding to shape a better world. 

It’s hard not to think about the web of plants, animals, ecosystems, and microscopic organisms that have been set on a collision course with each other as they seek to rebalance themselves. And in the middle of it all is us. 

After watching the hare for a few minutes, I continued my run. The trail led out of the brush and opened up into a large, flat field, sparingly dotted with those umbrella pines. At that moment, a bird I later identified in iNaturalist as a red kite (Milvus milvus) dropped out of one of the trees, skimmed the earth, and climbed into the sky. 


Brendan began his career teaching conservation education programs at the Columbus Zoo and Aquarium. He is interested in how the intersection of informal education, mass communications and marketing can be retooled to drive relatable, accessible climate action. While he loves all ecosystems equally, he is admittedly partial to those in the alpine.  


Sources and Further Reading:

Articles

Scientific Papers

Featured Creature: Aardvark

What unique animal could be a cross between a rabbit, a pig, an opossum, and an anteater?

The aardvark!

Photo by Kelly Abram from iNaturalist

Meet the aardvark – a one-of-a-kind mammal native only to sub-Saharan Africa.

The aardvark has an unusual hodge-podge mix of features including rabbit-like ears, a pig-like snout, an opossum-like tail, and a long, sticky anteater-like tongue. This creature has large and formidable claws used for digging and defense. Weighing in at 115 – 180 pounds, the aardvark is much heftier than it looks. 

Aardvarks inhabit the savannas, arid grasslands, and bushlands of sub-Saharan Africa where there is plenty of their favorite prey, ants and termites. They are solitary and do not socialize with others unless for mating or raising young. They live for about 18 years in the wild and approximately 25 years in captivity.

The aardvark is famous for being the first noun in the English dictionary. The animal goes by many names including Cape anteater and ant bear, but its colloquial moniker, aardvark, is Afrikaans for “earth pig”.

Photo by Louise Joubert from Wikimedia Commons

Odd Relatives

Although the aardvark is an eater of ants, it is not an anteater. Understandably, the comparison comes from its similar appearance and nearly identical diet to the anteater, which leads people to assume they are the same animal. However, the aardvark is its own species entirely, and in fact, it is more closely related to elephants than to anteaters. 

Unique Diet

Aardvarks are insectivores that eat ants and termites. They use their keen sense of smell to locate ant nests and termite mounds over great distances. Aardvarks have the highest number of olfactory turbinate bones of any mammal on the planet. An aardvark has about 9 -11 of these specialized bones which help support the olfactory bulb in the brain, where smells are processed. This larger-than-average olfactory system allows the aardvark to track such tiny creatures like ants and termites from far away. They have been observed swinging their heads back and forth close to the ground, much like a metal detector, to pick up a scent. 

Once an aardvark locates a termite mound, it uses its claws to break open the cement-hard structure. Its tongue, coated in sticky saliva, slurps up the exposed insects in seconds. The highly adapted tongue of an aardvark can be up to 1 foot long. Over the course of a night, a single aardvark eats over 45,000 termites. Amazingly, all of this is done without chewing. 

While aardvarks are classified as insectivores, they make one exception in their diet for a very unique fruit, the aardvark cucumber. This African melon looks similar to a cantaloupe but is grown completely underground. Aardvarks easily dig up the fruit and eat its watery, seed-filled interior. Once the fruit is digested, the seeds are dispersed by the aardvarks that cover their dung in dirt, effectively planting these seeds in the soil with a natural fertilizer. This symbiotic relationship helps propagate the aardvark cucumber, whose existence is entirely dependent upon the aardvark.

Photo by Nick Helme from Wikimedia Commons

Cultural Significance

The aardvark is regarded as a symbol of resilience in some African cultures due to its unrelenting bravery in tearing down termite mounds. The aardvark has very thick skin which helps avoid injury from hundreds of termite and ant bites. Because of their nocturnal habits and solitary nature, aardvarks are not a common sight during the day. It is said that anyone who is lucky enough to see one is blessed. 

Earth Engineer

Aardvarks are adept earth-movers known to create specialized burrows to live in. These burrows provide shelter away from the sun and from predators. Its powerful claws are specially adapted to move massive amounts of dirt in minutes, which helps the aardvark excavate multiple chambers within the den.  

Some burrows can be up to 10 feet deep and over 20 feet long. There are multiple entrances to the same burrow so the aardvark has a chance to escape if a predator poses a threat. Aardvarks have been observed to be very cautious creatures and practice an unusual ritual before exiting their abode. The aardvark stands at the edge of its burrow and uses its excellent sense of smell to detect any nearby predators. It listens for danger and emerges slowly. The aardvark then jumps a few times, pauses, and heads out for the night. Because aardvarks are primarily nocturnal, they don’t have much need for vivid sight and are colorblind. Their long ears and nose do the seeing for them. 

The physiology of these soil architects may strike some as strange, but it serves a purpose. The odd, arched silhouette of the aardvark is caused by its hind legs being longer than its front, which gives them a stronger stance when digging. This adaptation, combined with their formidable claws and muscular forelimbs, allows the aardvark to dig a hole 2-feet deep in just 30 seconds – much faster than a human with a shovel.

Photo by Louise Jobert from Wikimedia Commons

Ecological Importance

When aardvarks have depleted most of their territory’s termite mounds or ant nests, they must move on to new hunting grounds. Their abandoned burrows don’t stay empty for long and are occupied by a variety of species. Hyenas, wilddogs, warthogs, civets, and porcupines make their homes in aardvark burrows. The aardvark has an incredible impact on its environment by sculpting the very landscape itself and providing shelter for other creatures.

If you want to learn more about how aardvark burrows support other animals, check out this article documenting the one of the first observations of predators and prey cohabitating in the same burrow.

Burrowing away now,
Joely


Joely Hart is a wildlife enthusiast writing to inspire curiosity about Earth’s creatures. She holds a Bachelor’s degree in creative writing from the University of Central Florida and has a special interest in obscure, lesser-known species.


Sources and Further Reading:
https://www.miamiherald.com/news/nation-world/world/article274890346.html
https://www.thoughtco.com/10-facts-about-aardvarks-4129429
https://a-z-animals.com/animals/aardvark/
https://animalia.bio/aardvark#facts
https://www.britannica.com/animal/aardvark
https://carnegiemnh.org/a-is-for-aardvark/
https://nationalmuseumpublications.co.za/aardvarks-orycteropus-afer-and-their-symbolism-in-african-culture/

Featured Creature: Groundhog

What cute creature is an underground architect and an amateur meteorologist?  

The Groundhog!

Image by Harkiran Kaur from Pixabay

Groundhogs are famous rodents who enjoy the spotlight in early February, when people in the US and Canada celebrate Groundhog Day. These critters also go by woodchuck, whistle-pig, wood-shock, whistler, marmot, thickwood badger, red monk, land beaver, weenusk, monax, and groundpig.

Beyond their supposed (and generally debunked) prowess at predicting seasonal changes, these cuddly creatures exhibit a fascinating blend of behaviors and ecological significance. Groundhogs belong to the squirrel family as one of the 14 species of marmots, which are also aptly known as ground squirrels. Indeed, groundhogs’ fifteen minutes of fame, and their lives outside of it, are shaped by their burrowing talent and how that ties into their seasonal habits.

Life Underground

A defining characteristic of groundhogs is their habit of hibernating through the winter months. They spend the warmer seasons gorging themselves on vegetation, accumulating ample fat reserves to sustain them through the winter slumber. During hibernation, their heart rate drops and their body temperature lowers, enabling them to conserve energy in their underground burrows.

Burrowing is a hallmark behavior of groundhogs, with complex, multi-chambered burrows extending up to a total of 65 feet in length. These subterranean dwellings serve as multi-functional spaces where groundhogs sleep, raise their offspring, and even excrete waste in specific, separate tunnels. Intriguingly, the burrows also provide refuge for other wildlife species, which helps support the overall biodiversity of their habitats. Much like the dens of the related prairie dog, these burrows can shelter other species in times of need, offering a place of refuge during fires or cold snaps, or simply a home base to hide out from the usual predators. 

Cultural and Ecological Connections

Groundhog Day, celebrated on February 2nd each year, has captured the imagination of people across the United States and Canada. According to tradition, if a groundhog emerges from its burrow and sees its shadow, there will be six more weeks of winter, and if it doesn’t see its shadow (which happened this year), spring will come early. However, a study conducted in 2021 surveying years of predictions and seasonal records revealed that groundhogs’ predictions seem to be pure chance, with accuracy rates hovering around 50 percent.

Image by Kristie from Pixabay

Despite their failed reputation as predictors of seasonal changes, groundhogs excel in other aspects of survival. They are skilled foragers, feeding on a variety of vegetation, including leaves, flowers, and field crops. Their burrowing activities also play a crucial role in mixing and aerating the soil, a process which enhances nutrient absorption essential for plant growth.

While groundhogs are classified as species of least concern on the International Union for Conservation of Nature (IUCN) Red List, they face challenges in areas where they are overly abundant. Considered pests by some due to their burrowing activities, groundhogs occasionally come into conflict with humans, particularly farmers who may experience damage to gardens and crops.

Groundhogs are integral components of their ecosystems, providing shelter for various wildlife species and contributing to soil health through their burrowing activities. While adults are known to defend themselves fiercely against predators using their powerful claws and teeth, young groundhogs are more vulnerable to predation, particularly from birds of prey like hawks and other raptors.

Check out this short and sweet video from the Missouri Department of Conservation on Groundhogs:

Let us honor Groundhog Day as a reminder to be attentive to the organisms and ecosystems around us. The more we learn from one another, the better we can participate in the complex web of life in which we all play a role. 

Burrowing away now,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources and Further Reading:
https://www.nationalgeographic.com/animals/mammals/facts/groundhog?loggedin=true&rnd=1706906040576
https://carnegiemnh.org/groundhog-architecture/
https://mdc.mo.gov/discover-nature/field-guide/woodchuck-groundhog
https://www.britannica.com/animal/groundhog
https://thehill.com/changing-america/enrichment/arts-culture/3840820-the-history-of-groundhog-day-is-more-complex-than-you-may-think/

Featured Creature: Prairie Dog

Have you ever heard of a squirrel that barks?

Let me introduce you to the Prairie Dog. 

Sometimes, when walking alone in the high grasslands of the Western United States, you may feel as if you are being watched. 

My first encounter with prairie dogs in the wild occurred as I stood in an empty prairie just outside of Badlands National Park in South Dakota. As I meandered along, minding my own business, dozens of furry creatures with beady little eyes appeared, propped themselves up on their hind legs, and began to follow my every step. Prairie dogs are adorable, it is true, but when you see a dozen spread out, standing upright, watching you intently, it can be a bit disconcerting.

They were, however, no threat, and weren’t eyeballing me just to judge me. A prairie dog standing on his hind legs – “periscoping” as it is known – is simply keeping watch for predators. And their distinctive bark? It may sound like “yip,” but it is actually a sophisticated language developed over thousands of years that is still not fully understood by scientists. 

Prairie dog barks convey everything about a predator’s size, speed, and location. According to a study at the University of Northern Arizona led by Con Slobodchikoff, Ph.D (see video linked below) pitch, speed, and timbre were all altered in a consistent manner corresponding to the species of predator and the characteristics of each. Certain “yips” could even be interpreted to represent nouns (the threat is “human”), verbs (the “human” is moving toward us), and adjectives (the “human” is wearing an ugly yellow shirt). So now that I think about it, I guess they were judging me, and I am not sure how I feel about that. But still, those are some impressive squirrels.

Wait, did you say squirrels?

Yes.

Squirrels. From the Sciuridae family. Prairie dogs are marmots (or ground squirrels) that bark like a dog, prompting Lewis and Clark to label them “barking squirrels,” which may lack points for creativity but is at least more accurate than calling them “dogs.” Prairie dogs, in fact, have no connection to dogs whatsoever.

Amaury Laporte (CC BY 2.0 via Wikimedia Commons)

There are five major species of prairie dog, who all live in North America at elevations between 2,000 and 10,000 feet. The Black-Tailed prairie dog covers the largest territory, filling an extensive region from Montana to Texas. Gunnison’s prairie dogs occupy the southwest near the Four Corners region. White-Tailed prairie dogs reside in Wyoming, Utah, and Colorado. Mexican and Utah prairie dogs belong to Mexico and Utah, respectively, and both are considered endangered.

As you may have observed, prairie dogs live in areas prone to harsh extremes of weather. To protect themselves, they dig extensive burrow networks with multiple entrances, designed to create ventilation, route flood water into empty chambers deep underground, and keep watch for predators. Their burrows connect underground, organized into sections called “coteries,” each of which contains a single-family unit responsible for the maintenance and protection of their area. Multiple coteries become “towns” of startling size and complexity. According to the National Park Service, the largest prairie dog town on record covered 25,000 square miles, bigger than the state of West Virginia!

That IS an impressive squirrel.

Indeed.

Amaury Laporte (CC BY 2.0 via Wikimedia Commons)

Over the years, however, the prairie dog’s range has shrunk, scientists estimate, by as much as 99%, largely because of agriculture. Farmers and ranchers tend to regard prairie dogs as a nuisance, as they sometimes eat crops (they are mostly herbivores) and their holes create a hazard for livestock. They will bulldoze their towns or conduct contest kills to remove them, which has had devastating impacts.

Experts consider prairie dogs to be a keystone species. Their loss affects hundreds of other species who rely on them for food or use their burrows for shelter. They are instrumental in recharging groundwater, regulating soil erosion, and maintaining the soil’s level of production. Prairie dog decline, in fact, eventually leads to desertification of grassland environments.

So, an impressive AND important squirrel?

Yes, and the restoration of prairie dog habitats could be a crucial step in mitigating the effects of climate change.

If you’ve caught prairie dog fever, dive deeper into the resources below. And to learn more about Prairie Dog language, check out this fascinating video:

Hoping one day to converse with my personal prairie dog army,

Mike


Mike Conway is a part-time freelance writer who lives with his wife, kids, and dog Smudge (pictured) in Northern Virginia. 


Sources:
https://animals.net/prairie-dog/
Prairie dog – Wikipedia
https://www.humanesociety.org/resources/what-do-about-prairie-dogs
Prairie Dog Decline Reduces the Supply of Ecosystem Services and Leads to Desertification of Semiarid Grasslands | PLOS ONE
Prairie Dogs | National Geographic
Prairie Dogs: Pipsqueaks of the Prairie (U.S. National Park Service) (nps.gov)

Featured Creature: Nilgai

Which creature is the largest Asian antelope, considered sacred to some and pest to others?

The Nilgai!

Photo by Hemant Goyal from Pexels

This fascinating four-legged friend could be described by a whole host of leading questions, depending on which notable features we want to emphasize. Elizabeth Cary Mungall’s Exotic Animal Field Guide introduced the nilgai with the question “What animal looks like the combination of a horse and a cow with the beard of a turkey and short devil’s horns?”

Personally, I find the nilgai much cuter than that combination might suggest, but it may all be in the eye of the beholder. The name ‘nilgai’ translates to ‘blue cow’, but the nilgai is really most closely related to other antelopes within the bovine family Bovidae. Mature males do indeed have a blue tint to their coat, while calves and mature females remain tawny brown in color.

Photo by Clicker Babu from Unsplash

As their physiology suggests, nilgai are browsers that roam in small herds, with a strong running and climbing ability. I encountered them in the biodiversity parks of New Delhi and Gurgaon, where efforts to rewild the landscape to its original dry deciduous forest make for ideal stomping grounds for the nilgai. 

Prolific Browsers

Indigenous to the Indian subcontinent, the nilgai is at home in savanna and thin woodland, and tends to avoid dense forest. Instead, they roam through open woods, where they have room to browse, feeding on grasses and trees alike. They’re considered mixed feeders for that reason, and will adjust their diet according to the landscape. Nilgai are adept eaters, standing on their hind legs to reach trees’ fruits and flowers and relying on their impressive stature (which ranges from 3 to 5 feet, or 1 to 1.5 m, at the shoulder) to get what they need.

Photo from Wikipedia
(By Akkida, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=34508948)

Like other large herbivores, nilgai play an important role in nutrient cycling and maintaining the ecosystems they’re a part of. In this case, that looks like feeding on shrubs and trees to keep woodlands relatively open, as well as dispersing seeds through their dung. One 1994 study noted the ecological value of the nilgai in ravines lining the Yamuna River, where the nitrogen contained in their fecal matter can make a large difference in soil quality, particularly in hot summer months. 

These creatures actually defecate strategically, creating dung piles that are thought to mark territory between dominant males. As a clever evasion tactic, these are often created at crossroads in paths through forest or savanna-scape, so that predators may not be able to trace the nilgai’s next steps so easily. 

Photo from Wikipedia (By Bernard Gagnon – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30634949)

Food webs for changing times

The natural predators of the nilgai once included the Bengal tiger and Asiatic lion, as well as leopards, Indian wolves, striped hyena, and dholes (or Indian wild dogs) which sometimes prey on juveniles. However, as deforestation, habitat loss and fragmentation, and development pressures change the face of the subcontinent, the ecological role of the nilgai has become more complicated. While their association with cows, a sacred animal in Hinduism, has widely prevented nilgai from being killed by humans, the relationship between people and nilgai is becoming more contentious. 

Where nilgai lack their traditional habitat to browse, they turn to plundering agricultural fields, frustrating the farmers who work so hard to cultivate these crops. Farmers in many Indian states thus consider them pests, and the state of Bihar has now classified them as ‘vermin’ and allowed them to be culled.  

Photo from Wikipedia (By Jon Connell – https://www.flickr.com/photos/ciamabue/4570527773/in/photostream/, CC BY 2.0)

There’s no place like… Texas?  

Strangely enough, when I got inspired by my nilgai sightings in India and decided to learn more about these Asian antelopes, one of the first search results I encountered involved nilgai populations here in the US. Specifically in Texas, an introduction of nilgai in the 1920 and 30s has spawned a population of feral roamers. Accounts say that nilgai were originally brought to the North King Ranch both for conservation and for exotic game hunting, somewhat distinct priorities that regardless led to the same result, a Texas population that now booms at over 30,000 individuals.

In this locale, nilgai largely graze grasses and crops, as well as scrub and oak forests. Here hunters have no qualms about killing them, but some animal rights groups object, and popular opinion remains divided on whether such treatment is cruelty or, well, fair game. 

These days, one concern is that a large nilgai population contributes to the spread of the cattle fever tick. Another concern remains about these grazers acting as ‘pests’ on agricultural land. 

Fundamentally there is a question that lies at the heart of the nilgai’s fate, both at home in India and Bangladesh, where natural predators and original habitat have steeply declined, and abroad, where they weren’t a part of the original ecosystem at all: what do you do when an animal’s ecological role is out of balance? 

In my view, there are no easy answers, but a familiar pattern we seem to uncover – that healthy ecosystems, where intact, harbor more complexity than we can recreate or give them credit for. Little by little, I hope we can support their conservation and resurgence. 

By Maya Dutta


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. She is the Assistant Director of Regenerative Projects at Bio4Climate.


Sources:
https://animalia.bio/nilgai
https://www.thedailybeast.com/nilgai-the-chimeric-beast-overrunning-texas-and-spreading-disease
https://en.wikipedia.org/wiki/Nilgai
https://www.britannica.com/animal/nilgai

Featured Creature: European Hamster

"European hamster at a city park" by Ivan Radic is licensed under CC BY 2.0.

Which keystone species creates intricate burrows, is aggressive towards its own kind, and hibernates from October to May? 

The European Hamster!

European hamster at a city park
(Photo by Ivan Radic licensed under CC BY 2.0)

Did you know that there are multiple species of hamster in the wild? I didn’t know this until recently, when I stumbled upon a BBC Earth video of a European Hamster foraging for food in a graveyard. Having only ever been exposed to domesticated hamsters, I was fascinated by this creature and eager to learn more about it. 

Burrow into the Basics

The scientific name for the European Hamster is Cricetus cricetus. These furry creatures have a small, ovalish body covered in reddish-brown fur, with the exception of white fur on their face and the side of their body. Quite small in size, European Hamsters typically weigh about 12 – 15 ounces and are about 8-9 inches in length (just a bit bigger than the average human hand!). 

In terms of geography, this solitary species is native to Central and Eastern Europe, hence its name. They inhabit steppe and grassland regions that are lush with greenery on relatively flat land. 

A Life Well-Lived

The European Hamster has a unique mating process. During the mating season between March and May, females engage in a ritual in which they run in a figure-8 pattern to attract their mate. Males, in turn, will chase the females during this ritual while making a special mating call. 

After successful mating with several males, a female’s pregnancy will last about 18 – 21 days and results in about 3 – 7 hamster pups. Females are the primary caregivers to their pups, as males are relatively hands-off in the upbringing of their young. They typically nurse the pups for about a month, or 30 days. The European Hamster has an impressive lifespan among small rodents – it can live up to 8 whole years!

Settling in for Winter

Hibernation is an important part of the European Hamster’s key to a long life. They typically rest from mid-October to mid-March in a deep (2 meter) underground burrow. During hibernation, they wake up about every week or so to get a quick snack before falling back into rest. 

Their burrows play a vital role in the European Hamster’s daily life. These burrows exist deep in the ground and have a variety of chambers for specific uses, like food storage. 

European Hamster burrow
(Photo by Bas Kers (NL) is licensed under CC BY-NC-SA 2.0)

With a healthy appetite, the European hamster loves to eat grasses, seeds, grains, roots, fruits, legumes, and occasionally some insects or insect larvae. They might often be seen spending the day packing their roomy cheeks full of food to bring back to their food storage chamber to prepare for hibernation. 

A Temperamental Creature

European Hamsters aren’t the most friendly of creatures, possibly least of all towards their own kind. They mark their territory with secretions, and when they come into contact with another member of their species, they may act aggressively. They have also been known to attack humans when approached by farmers, who may view the species as harmful to their agricultural operations. 

European Hamsters deserve particular recognition for their role as a keystone species. They play a crucial role in dispersing seeds throughout the European grassland and steppe ecosystems that they inhabit. They also contribute to the food web by primarily consuming producers (i.e., plants & plant products), and by serving as prey to a host of predators including birds, foxes, weasels, dogs, cats, badgers, and more. 

One Keystone Species Affects the Entire Ecosystem

Unfortunately, this important keystone species is currently critically endangered due to a number of factors. According to Animal Diversity Web, “European hamsters have been hunted or sold for their pelts. They also have been used for cancer research, due to their exposure to pesticides and air pollution in urban settings.”

Luckily, there are rehabilitation and reintroduction efforts underway to protect this valuable keystone species and the ecosystem it helps to support. You can learn more about one such project in Khotyn National Park, Ukraine by clicking here: 

For all keystone species, 
Abby


Abby Abrahamson is a writer, activist, and educator with a passion for community-led biodiversity and climate solutions. As a graduate of sociology and environmental studies, she appreciates the intersectionality of our challenges of climate justice, conservation, and regeneration. Now a Teacher Naturalist with Mass Audubon, Abby formerly worked with Bio4Climate on communications, college outreach, and community engagement. She has also been involved in Jane Goodall’s Roots and Shoots, an organization that helps empower young people to work on environmental, conservation, and humanitarian issues.


Sources:
https://www.animalia.bio/european-hamster
https://en.wikipedia.org/wiki/European_hamster
https://animaldiversity.org/accounts/Cricetus_cricetus
https://www.nationalgeographic.com/animals/article/common-hamster-named-critically-endangered-europe

Featured Creature: Ladybug

Photo by Roberto Navarro on Unsplash

What tiny creature brings luck to farmers and other folks all over the globe?

The ladybug! 

Photo by Roberto Navarro on Unsplash

One Lucky Lady

Ladybugs, or beetles of the family Coccinellidae, are small, often colorful rounded insects beloved by children’s rhymes and gardeners alike. 

Ladybugs are thought to be a sign of luck in many cultures and urban myths. Whether it’s because of their cuteness or their supposed powers of good fortune, people often hold ladybugs as an exception to their aversion to insects. Perhaps the lovely ladybug can pave the way to a more widespread appreciation for insects and their importance in the web of life. 

There are a variety of superstitions or myths around ladybugs, as people of different cultures have developed different takes on what kind of luck this little critter brings. Some view ladybugs as portents of love, and say that the redder they are the more luck they bring. Others say that it’s the number of spots that count – predicting the number of years of good luck you’ll have, or the number of months until your greatest wish comes true, depending on whom you ask.

In Norway, it’s said that if two people catch sight of a ladybug at the same time, they will fall in love. Whether ladybugs are said to bring luck in love or in the year’s coming harvest, it’s widely believed that killing a ladybug confers bad luck, so steer clear!

Photo by Dustin Humes on Unsplash

Doing their part 

In all likelihood, ladybugs have become associated with luck because of the very real help they provide to farmers and growers. Ladybugs prey on aphids, mealybugs, and other insects that can damage crops by latching on and sapping them of their nutrients. While a number of artificial pesticides can be used to control such problems, these dangerous chemicals often have unintended consequences, harming not only the insects they target, but also killing beneficial insects, running off and seeping into groundwater, poisoning soil, and altering ecosystems. Ladybugs provide a natural alternative to chemical pesticides because they target the pests specifically, leaving plants, other insects and animals, and humans all unharmed. 

Ladybug larvae feast on aphids, mealybugs, and other soft-bodied insects, and can consume up to 50 aphids a day. They continue to maintain this diet in their pupal and adult forms, and may eat up to 5000 insects in a lifetime. Even through metamorphosis, some things never change! 

Check out this short video showing the life cycle of the ladybug:

A diverse family

Also known as “ladybirds” or “lady beetles”, ladybugs are found pretty much everywhere around the globe, and there are over 5000 different species of them. While ladybugs (at least here in the Northeast US) are famous for sporting a pattern of red shell with black spots, they can actually have a variety of colors and patterns. 

File from entomart.be

Their bright color and patterning signals to predators that they should stay away, or face a very disappointing meal. Indeed, when under threat, ladybugs release a distasteful fluid from their joints. As is often the case with many other familiar plants and animals, these insects are more than meets the eye. 

Ladybugs are a great example of a creature that is beloved for its contributions to its ecosystem, enabling plant life and complex networks of creatures to thrive. When we pay attention to the way other organisms help out in their own habitats, we come to realize that you don’t need luck when you have healthy ecosystems. By using natural means of pest control and working with other life forms to keep systems in balance, we can make our own good fortune. 

Fingers crossed,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources:
https://entomology.ca.uky.edu/ef105
https://kids.nationalgeographic.com/animals/invertebrates/facts/ladybug
https://organiccontrol.com/lady-bugs/