Featured Creature: Slow Loris

What creature has large eyes, dexterous feet, and is the only venomous primate known to exist?? 

The slow loris (Nycticebus)!

Image Credit: Helena Snyder (CC BY-SA 3.0 via Wikimedia Commons)

Sometimes the smallest creatures hide the largest secrets/mysteries. At just about 10 inches long and weighing up to 2 pounds, the slow loris is, in my opinion, no exception. This small, tailless primate with large (and iconic) moon-like eyes inhabits rainforests. As omnivores, slow lorises feed on both fruit and insects. There are nine species total, all inhabiting the Southeast region of Asia ranging from the islands of Java and Borneo to Vietnam and China.

True to their name, slow lorises are not light on their feet and move slowly. Despite this, slow lorises are not related to sloths, but are instead more closely related to lemurs. But in the rainforest, that’s not such a bad thing. Their leisurely, creeping gait helps them conserve energy and ambush their insect prey without being detected.

Adaptations

Living in the dense, verdant rainforest isn’t for everyone.The jungle is riddled with serpentine vines, thick vegetation, and towering trees. But slow lorises have developed multiple adaptations that allow them to thrive in such an environment. 

  Their fur markings serve as a warning to other animals that they are not to be trifled with. This is known as aposematic colouration. Similar to skunks, contrasting fur colors and shapes signal that they are venomous which makes predators think twice about attacking. 

Slow lorises are nocturnal, and those large eyes allow them to significantly dilate their pupils, letting in more light and allowing them to easily see in near total darkness.

Even eating is no small feat in the rainforest. Slow lorises have specialized bottom front teeth, called a toothcomb. The grouping of long, thin teeth acts like a hair comb, allowing the slow loris to strip strong bark and uncover nutritious tree gum or sap. Equipped with an impressively strong grip, they can hang upside down and use their dexterous feet to hold onto branches while reaching for fruit just out of reach for most other animals. A network of capillaries called retia mirabilia allows them to do this without losing feeling in their limbs. With these adaptations, slow lorises are ideally suited for a life among the trees.

       Image Credit: David Haring (CC BY-SA 3.0 via Wikimedia Commons)

Venemous Primate

Slow lorises are the only venomous primate on Earth. They have brachial glands located in the crook of their elbow that secrete a toxic oil. When deploying the toxin, they lick this gland to venomize their saliva for a potent bite. And no one is safe– slow lorises use this venom on predators, and even each other. Fiercely territorial, they are one of the few species known to use venom on their own kind. In studying this behavior, scientists have found many slow lorises, especially young males, to have bite wounds.

The venom can be used as a protective, preventative defense mechanism as well. Female slow lorises have been observed licking their young to cover them in toxic saliva in hopes of deterring predators while they leave their babies in the safety of a tree to forage.

Whether you’re a natural predator, human, or another slow loris, a bite is very painful. Humans will experience pain from the strong bite, then a tingling sensation, followed by extreme swelling of the face and the start of anaphylactic shock. It can be fatal if not treated in time with epinephrine.

Image Credit: Helena Snyder (CC BY-SA 3.0 via Wikimedia Commons)

Bridging Human-Animal Conflicts

There are two major threats to slow loris populations – the illegal pet trade and habitat destruction. Because of their unique cuteness, soft fur, and small size, these creatures are often sold as illegal pets. Poachers will use flashlights to stun and capture the nocturnal slow loris, clip or remove their teeth  to avoid harmful bites to humans and, because of their endearing, teddy bear-like appearance, sell them off as pets. Slow lorises are nocturnal and not able to withstand the stress of being forced to be awake during the daytime. They are also often not fed a proper diet of fruit, tree sap, and insects which leads to nutritional deficiencies and poor health.


Habitat loss from agricultural expansion is another threat. As farms grow, slow loris habitat shrinks. Land cleared to plant crops encroaches upon the rainforest which results in less territory and food sources for the slow loris.

However, one scientist found a way to reduce the canopy-loss from farming and restore slow loris territory. After observing wild slow lorises using above-ground water pipes to traverse farmland, researcher Anna Nekaris had an idea. Through her organization, the Little Fireface Project, she worked with local farmers to add more water pipes to act as bridges for slow lorises to use to move about the area. These unnatural vines provided a highway connecting isolated spots of jungle to each other. Not only did the slow loris population benefit by gaining more arboreal access to trees and food sources, but the community also benefited. Nekaris worked with the farmers to provide more water pipes to their land while showing human-animal conflict can have a mutually beneficial solution.

Image Credit: Jefri Tarigan (CC BY-SA 4.0 via Wikimedia Commons)

Conservation

Every species of slow lorises is threatened, according to the IUCN, which monitors wild populations. Slow lorises may seem like an odd and somewhat unimportant creature on the grand ecological scale, but they are very important pollinators. When feeding on flowers, sap, or fruit, they are integral in spreading pollen and seeds across the forest. Through foraging and dispersal, slow lorises maintain the health of the ecosystem’s flora. 

The slow loris garners attention for its cute looks, but beneath its fuzzy face and moon-like eyes, is a creature connected to the/its environment. Slow lorises are a perfect example of how species are tethered to their habitat in an integral way – their existence directly impacts forest propagation. As a pollinator, they disperse pollen stuck on their fur to new areas and increase genetic diversity throughout the forest. Slow lorises are proof of Earth’s interconnectedness. 

To see the slow loris in action climbing from tree to tree and foraging for food, watch this short video.

Climbing up and away for now,
Joely


Joely Hart is a wildlife enthusiast writing to inspire curiosity about Earth’s creatures. She holds a Bachelor’s degree in creative writing from the University of Central Florida and has a special interest in obscure, lesser-known species.


Sources and Further Reading:

Articles

Scientific Papers

Featured Creature: Iberian Hare

What athletic creature can reach speeds of 45mph and cool itself down with large ears – all in a 2.5 kg frame? 

The Iberian hare (Lepus granatensis)!

Image Credit: Juan Lacruz (CC BY-SA 3.0 via Wikimedia Commons)

Five times the size of New York’s Central Park, Casa de Campo (literally, “country house”) outside Madrid is filled with rustic stone pine trees – emblematic of the Mediterranean and easily identified by their bare trunks and full, blooming crown of pine needles. It’s sometimes called the “umbrella pine” for good reason. Above, within, around, and beneath these trees, nearly 200 species of vertebrates live. 

Out for a run through the park, my feet pounded the dry dirt along a gradual decline for the last mile. Here, the earthen trail dipped down steeply and cut through dense brush. As I dropped in, I almost landed squarely on top of what appeared to be a large rabbit. To my surprise, it didn’t dart away; I think I was more startled than it was. You see, I’d set out on that run in part to find inspiration, follow my curiosity, and think of a creature I wanted to learn more about. I’m not such a strong believer in fate, but this rabbit (or so I thought at the time) had certainly made its case. 

I lingered and watched it mill around the brush. The more I watched, the more I wondered about its story. 

A Keystone Species On The Iberian Peninsula

The Iberian hare (Lepus granatensis) is endemic, or native, to the entire peninsula that contains Spain, Portugal, and the enclave nation of Andorra. Throughout that region they can be found in diverse habitats including dry Mediterranean scrublands, woodlands, and agricultural fields. It thrives in regions with ample vegetation that offer cover and food, adapting well to the peninsula’s varied landscapes, which range from dry, hot areas to slightly cooler, temperate zones. In some respects, Casa de Campo itself is a microcosm of these environments.

Lepus granatensis is a keystone species, meaning it occupies an essential link in the ecosystem’s food chain and plays a particularly outsized role in balancing its environment. It survives on a diet of grasses, leaves, and shoots, playing a crucial role in seed dispersal and vegetation control – and is a source of prey for a range of birds and mammals. The hare’s diet and grazing habits help control plant overgrowth and support a diverse plant community, evidenced in Casa de Campo by the more than 600,000 plant specimens found in the park alone.

The open ground this hare navigates every day is patrolled by animals who want to eat her– lynx, coyote, and red foxes from the land and eagles, owls, hawks, and red kites from the air. To get from point A to point B she must be fast, and she is. Powerful hind legs propel Lepus granatensis to top sprinting speeds of 45-50 miles-per-hour, making her one of the fastest land animals on the peninsula. It’s a pace that puts my nine-minute mile to shame, and is an essential adaptation to survive here, far from the relative safety of dense forest or lush meadow. 

       Casa de Campo, a 4,257 acre park on the edge of Madrid, boasts more that 600,000 plant specimens and nearly 200 species of vertebrates.
Image by author, who was apparently far too busy taking pictures instead of running while on his run.

Nature’s Air Conditioning

When I first started coming to Madrid, adapting to the sparing or non-existent use of air conditioning in the summer was an adventure, to say the least. I can do without the Chipotle and readily available iced coffee, but having been raised on A/C since I was born, it took some getting used to. Unlike me in this regard, the hare I ran into that day is well suited to her environment. It is one of large, open landscapes dotted with thick low lying brush, olive trees, holm oaks, and pines. Rainfall is infrequent, and summers are scorched by the strong Spanish sun. 

Her ears are larger and thinner than those of a rabbit. They often stand upright. When backlit, one can easily make out a network of veins and arteries, traversing the ear like rivers and streams through a watershed.

An unidentified leporid (family of rabbits and hares) displaying the network of arteries and veins that help transfer heat from warm blood to the surrounding air, keeping her cool.
Image by author.

Therein lies her secret. Hares don’t perspire like you and me– nor do they pant like a canine. Instead, they depend on their large, thin-skinned ears to act as thermostat and air conditioner. No, they don’t flap them like a paper fan. Instead, they help her cool down by getting hotter.

When the hare needs to release excess heat, she can expand that network of blood vessels in her ears, allowing her to redirect hot blood away from her body and through the thin skin of her ears. Because her ears have a large surface area putting those veins in closer contact to the ambient air, this increased blood flow facilitates the dissipation of heat into the ever so slightly cooler surrounding air, helping her regulate her body temperature effectively.

We see this strategy of counter-current thermoregulation in nature again and again, in the ears of elephants and deer, and a variation in the snow and ice-bound paws of the arctic fox.

Thermal imaging demonstrating how heat retention and dissipation in rabbits is concentrated through the ears. Image credit: V. Redialli, et al., 2008
This thermal video clearly illustrates the
heat disparity between a rabbit’s ears, and the rest of its body.

Confronting a Microscopic Threat

Before I continued my run, I fired off a few observations to a zoologist friend of mine for help with the species identification. Among them was what we suspected to be a bad case of conjunctivitis in both eyes; significant levels of swelling and discharge were present. 

While neither of us can offer a certain diagnosis for this particular hare, further research has indicated that something more serious is afoot.

In 1952, France was well into its post-war reconstruction, buoyed along by a growing economy and population. As the country was just beginning a new chapter in its story, so too was recently retired physician Dr. Paul-Félix Armand-Delille. In his new-found free time, Armand-Delille took up great interest in the pristine care and management of the grounds of his estate, Château Maillebois, in the department of Eure-et-Loir, a little more than 100km west of Paris.

Troubled by the presence of wild European rabbits (Oryctolagus cuniculus) on his property, Armand-Delille read about the success Australian farmers had found using strains of the myxoma virus to control invasive rabbit species on that continent (they’d been imported by an Englishman decades earlier). Using his old medical connections, Armand-Delille secured some myxoma virus for himself and intentionally infected and released two of the rabbits on his property, confident that they would not be able to leave it. 

Armand-Delille’s Château Maillebois today.
Image credit: Marcengel (CC BY-SA 3.0 via Wikimedia Commons)

In just one year, nearly half of all wild rabbits in France would be dead, consumed by myxomatosis, the disease caused by the myxoma virus. In the decades since, the disease has ravaged Oryctolagus cuniculus populations across Europe, shrinking their numbers to just a fraction of what they were at mid-century. The sudden, near overnight disappearance of the European rabbit also crippled populations of its specialist predator, the Iberian lynx (Lynx pardinus). With the lynx unable to replace the rabbit in its diet, the species was pushed to the brink of extinction. Recent conservation efforts have helped recover and stabilize populations, but Lynx pardinus remains a “vulnerable” species. 

Fortunately, over just the last few decades some populations of the European rabbit have resurged, having developed strong resistance to the virus.

But viruses are always trying, though usually failing, to jump from one host species to another. As species migrate and habitats converge, a virus gets more and more chances to make the leap.

As early as 2018, myxoma succeeded in making the leap from Oryctolagus cuniculus to Lepus granatensis. The virus that causes myxomatosis has wreaked havoc on Iberian hare populations on the peninsula; a species that did not have the advantage of decades and decades of exposure to build up resistance. Myxomatosis can cause fever, lesions, lethargy, and, it turns out, severe swelling and discharge around the eyes. Sometimes these symptoms can subside. But for the Iberian hare the virus is remarkably lethal, with a mean mortality rate of about 70%. Data indicates that since 2018, the virus has decimated Iberian hare populations. This break in the chain has serious implications for both the vegetation the hare keeps in check and the predators that depend on the hare as prey – implications that we are only beginning to understand.

The impact of myxomatosis outbreaks on Iberian hare populations after the 2018 species jump event. Image credit: Cardoso B, et al.

As a warming world continues to heat Iberia, the delicately balanced ecosystem Lepus granatensis inhabits is increasingly jeopardized. More intense storms flood the parched terrain while stifling heat and wildfires threaten vegetation. Lepus granatensis is likely to migrate north in search of more tolerable environments that can sustain the plant life it depends on for both food and cover. The further north the hare goes, the more its new habitat will overlap with the European rabbit and other species. The future of large populations of Lepus granatensis in the face of this disease and increasing climate fallout is uncertain. Since returning to Casa de Campo, I’ve noticed the swelling and discharge in other leporids as well.

Lepus granatensis
Image credit: JoseVi More Díaz (CC-BY-NC-ND)

Complexity

This isn’t the story I set out to tell. When I stumbled on the hare, I expected to write an essay about reconnecting with nature as I embarked on my own new journey as part of the Bio4Climate team. 

Transitioning from a place of hope and curiosity, to understanding the more dire situation faced by both the hare I crossed paths with and the species as a whole was deflating. Yet, that’s all part of nature’s complexity; we don’t always get the happy endings we want. To some extent, these aren’t our stories to write. But even that conclusion is built around a false premise, because none of these stories are over. 

The recent outbreak has prompted renewed research interest into threats facing hare populations. And even if we distill the bigger story down to this specific hare, I don’t know what will become of her. No, the odds aren’t great. But in the time that I watched her she simply carried on, foraging away in the brush. It’s a small thing to observe, but I think there’s hope in that— in identifying the struggle and the resilience of living things, and channeling that understanding to shape a better world. 

It’s hard not to think about the web of plants, animals, ecosystems, and microscopic organisms that have been set on a collision course with each other as they seek to rebalance themselves. And in the middle of it all is us. 

After watching the hare for a few minutes, I continued my run. The trail led out of the brush and opened up into a large, flat field, sparingly dotted with those umbrella pines. At that moment, a bird I later identified in iNaturalist as a red kite (Milvus milvus) dropped out of one of the trees, skimmed the earth, and climbed into the sky. 


Brendan began his career teaching conservation education programs at the Columbus Zoo and Aquarium. He is interested in how the intersection of informal education, mass communications and marketing can be retooled to drive relatable, accessible climate action. While he loves all ecosystems equally, he is admittedly partial to those in the alpine.  


Sources and Further Reading:

Articles

Scientific Papers

Featured Creature: Chevrotain

What creature is the world’s smallest ungulate?

The chevrotain!

Photo by Bjørn Christian Tørrissen (CC BY-SA 3.0 via Wikimedia Commons)

The chevrotain is an incredibly unique animal native to India and Southeast Asia. This creature is just 12 inches tall and about 29 inches long – the size of a rabbit. It weighs approximately 4-11 pounds and sports a reddish-chestnut brown coat with white markings on its chest. The chevrotain is the world’s smallest hoofed mammal. The chevrotain is also called the mouse-deer, but is not related to either a mouse or deer. Entirely a species of its own, the chevrotain is a one-of-a-kind creature.

There are ten species of chevrotain, nine of which reside in Asia while one – the water chevrotain – is native to Africa, spanning from Southern Benin to the Democratic Republic of Congo. This particular species lives near rivers and lakes as its name implies. When threatened, the water chevrotain will submerge itself underwater for up to four minutes to escape a predator. All chevrotains are very small with the tiniest being the lesser Malay chevrotain at 4 pounds and the largest being the water chevrotain at 33 pounds.

Photo by P. Jeganathan (CC BY-SA 4.0 via Wikimedia Commons)

Diet

These miniature ungulates are herbivores and feed on vegetation like grasses, leaves, roots, flowers, and fruit. The chevrotain is a ruminant and has a 4 chambered stomach similar to that of a cow’s. This stomach helps digest fibrous plant material and extract nutrients from plant matter. Chevrotains inhabit jungles and forage for low hanging and fallen fruit as well as ground plants that are easy to reach due to their short stature. 

Fangs

Despite looking like mini-deer, chevrotains do not have antlers. Instead, they have elongated incisors. In males, these teeth protrude beyond the mouth like tusks which are used when fighting. Chevrotains also  use their long fangs to expose roots for consumption.

Photo by Vassil (via Wikimedia Commons)

Jungle Ghosts

Chevrotains are known for being solitary, quiet, and difficult to find amongst dense forests. One species in particular has remained hidden from scientists for nearly 30 years – until recently. The silver-backed chevrotain, native to Vietnam, had not been seen for decades, despite camera traps and excursions to find the creature. But in 2017, that all changed. A camera trap captured the elusive silver-backed chevrotain, the first sighting since 1990. Still, so little is known about this species that the IUCN has assigned the status of “data deficient”. 

Conservation ensures that no species is lost to history and reinforces the importance of a diverse ecosystem where every organism has a vital role to play. Even when all hope seems lost, life finds a way.

Treading quietly away for now,
Joely


Joely Hart is a wildlife enthusiast writing to inspire curiosity about Earth’s creatures. She holds a Bachelor’s degree in creative writing from the University of Central Florida and has a special interest in obscure, lesser-known species.


Sources and Further Reading:
https://a-z-animals.com/animals/mouse-deer-chevrotain
https://www.khaosok.com/national-park/mouse-deer
https://www.ultimateungulate.com/Artiodactyla/Hyemoschus_aquaticus.html
https://factanimal.com/chevrotain/
https://www.npr.org/2019/11/11/778312670/silver-backed-chevrotain-with-fangs-and-hooves-photographed-in-wild-for-first-ti

Featured Creature: Blue Whale

Which creature who helps fight climate change has newborns the size of an adult elephant and is not a fan of boats?

The Blue Whale!

Photo from National Marine Sanctuaries (via Wikimedia Commons)

Big, bigger, and biggest

Blue whales are the largest creature to ever grace this Earth. They can grow to around 100 ft (33 meters), which is more than twice the size of a T-Rex dinosaur! Newborn calves are around the same size as an adult African elephant – about 23 ft (7 meters). To get more of an idea of how huge these animals are, picture this: a blue whale’s heart is the size of a car, and their blood vessels are so wide a person can swim through them!

Despite their large size, blue whales eat tiny organisms. Their favorite food is krill, small shrimp-like creatures. They can eat up to 40 million of these every day. They do so by opening their mouths really wide, and after getting a mouthful, they’ll close their mouths and force out the swallowed water with their tongue, while trapping the krill behind their baleen plates – this method is known as filter feeding.

Photo by Don Ramey Logan (CC BY-SA 3.0 via Wikimedia Commons)

From coast to coast

Blue whales live in every ocean except the Arctic. They usually travel alone or in small groups of up to four, but when there are plenty of krill to go around, more than 60 of these mega-creatures will gather around and feast. 

Blue whales can communicate across 1,000 miles (over 1600 km)! Their calls are loud and deep, reaching up to 188 decibels – so loud that it would be too painful for human ears to bear. Scientists believe that these calls produce sonar – helping the whales navigate through dark ocean depths.

Climate Regulator

All that krill has to go somewhere, meaning out the other end. Whale poop helps maintain the health of oceans by fertilizing microscopic plankton. Plankton is the bedrock of all sea life, as it feeds the smallest of critters, and these critters then feed larger creatures (and on goes the food chain). Plankton include algae and cyanobacteria that get their energy through photosynthesis, and they are abundant throughout Earth’s oceans. These microorganisms contribute to carbon storage by promoting the cycling of carbon in the ocean, rather than its emission in the form of carbon dioxide.  Without whales, we wouldn’t have as much plankton, and without plankton, the food cycle would collapse, and more gas would rise to the atmosphere. Therefore, whale poop acts as a climate stabilizer.

Learn more about this whale-based nutrient cycle here:

Size doesn’t equal protection

Unfortunately, the sheer size of blue whales isn’t enough to prevent them from harm. Blue whales were heavily hunted until last century, and although a global ban was imposed in 1966, they are still considered endangered. 

Today, blue whales must navigate large and cumbersome fishing gear. When they get entangled, the gear attached to them can cause severe injury. Dragging all that gear adds a lot of weight, so this also zaps their energy sources. Since blue whales communicate through calls intended to travel long distances, increased ocean noise either from ships or underwater military tests can also disrupt their natural behaviors. 

Another threat blue whales face are vessel strikes. They can swim up to 20 miles an hour, but only for short bursts. Usually, blue whales travel at a steady pace of 5 miles per hour. This means that they aren’t fast enough to dodge incoming vessels, and these collisions can lead to injuries or even death for the whales. In areas where traffic is high, such as ports and shipping lanes, this threat becomes even more prominent.

To protect blue whales, and our oceans, we can implement sustainable fishing practices that use marine mammal-friendly gear. We can also reduce man-made noise, and utilize precautionary measures when venturing out to sea. That way we avoid vessel strikes and have a higher chance of witnessing the largest creature to ever grace our planet.

For creatures big, bigger, and biggest,
Tania


Tania graduated from Tufts University with a Master of Science in Animals and Public Policy. Her academic research projects focused on wildlife conservation efforts, and the impacts that human activities have on wild habitats. As a writer and activist, Tania emphasizes the connections between planet, human, and animal health. She is a co-founder of the podcast Closing the Gap, and works on outreach and communications for Sustainable Harvest International. She loves hiking, snorkeling, and advocating for social justice.


Sources and Further Reading:
https://us.whales.org/whales-dolphins/facts-about-blue-whales/
https://www.natgeokids.com/uk/discover/animals/sea-life/10-blue-whale-facts/
https://www.fisheries.noaa.gov/species/blue-whale 
https://www.greatwhaleconservancy.org/how-whales-help-the-ocean

Featured Creature: Aardvark

What unique animal could be a cross between a rabbit, a pig, an opossum, and an anteater?

The aardvark!

Photo by Kelly Abram from iNaturalist

Meet the aardvark – a one-of-a-kind mammal native only to sub-Saharan Africa.

The aardvark has an unusual hodge-podge mix of features including rabbit-like ears, a pig-like snout, an opossum-like tail, and a long, sticky anteater-like tongue. This creature has large and formidable claws used for digging and defense. Weighing in at 115 – 180 pounds, the aardvark is much heftier than it looks. 

Aardvarks inhabit the savannas, arid grasslands, and bushlands of sub-Saharan Africa where there is plenty of their favorite prey, ants and termites. They are solitary and do not socialize with others unless for mating or raising young. They live for about 18 years in the wild and approximately 25 years in captivity.

The aardvark is famous for being the first noun in the English dictionary. The animal goes by many names including Cape anteater and ant bear, but its colloquial moniker, aardvark, is Afrikaans for “earth pig”.

Photo by Louise Joubert from Wikimedia Commons

Odd Relatives

Although the aardvark is an eater of ants, it is not an anteater. Understandably, the comparison comes from its similar appearance and nearly identical diet to the anteater, which leads people to assume they are the same animal. However, the aardvark is its own species entirely, and in fact, it is more closely related to elephants than to anteaters. 

Unique Diet

Aardvarks are insectivores that eat ants and termites. They use their keen sense of smell to locate ant nests and termite mounds over great distances. Aardvarks have the highest number of olfactory turbinate bones of any mammal on the planet. An aardvark has about 9 -11 of these specialized bones which help support the olfactory bulb in the brain, where smells are processed. This larger-than-average olfactory system allows the aardvark to track such tiny creatures like ants and termites from far away. They have been observed swinging their heads back and forth close to the ground, much like a metal detector, to pick up a scent. 

Once an aardvark locates a termite mound, it uses its claws to break open the cement-hard structure. Its tongue, coated in sticky saliva, slurps up the exposed insects in seconds. The highly adapted tongue of an aardvark can be up to 1 foot long. Over the course of a night, a single aardvark eats over 45,000 termites. Amazingly, all of this is done without chewing. 

While aardvarks are classified as insectivores, they make one exception in their diet for a very unique fruit, the aardvark cucumber. This African melon looks similar to a cantaloupe but is grown completely underground. Aardvarks easily dig up the fruit and eat its watery, seed-filled interior. Once the fruit is digested, the seeds are dispersed by the aardvarks that cover their dung in dirt, effectively planting these seeds in the soil with a natural fertilizer. This symbiotic relationship helps propagate the aardvark cucumber, whose existence is entirely dependent upon the aardvark.

Photo by Nick Helme from Wikimedia Commons

Cultural Significance

The aardvark is regarded as a symbol of resilience in some African cultures due to its unrelenting bravery in tearing down termite mounds. The aardvark has very thick skin which helps avoid injury from hundreds of termite and ant bites. Because of their nocturnal habits and solitary nature, aardvarks are not a common sight during the day. It is said that anyone who is lucky enough to see one is blessed. 

Earth Engineer

Aardvarks are adept earth-movers known to create specialized burrows to live in. These burrows provide shelter away from the sun and from predators. Its powerful claws are specially adapted to move massive amounts of dirt in minutes, which helps the aardvark excavate multiple chambers within the den.  

Some burrows can be up to 10 feet deep and over 20 feet long. There are multiple entrances to the same burrow so the aardvark has a chance to escape if a predator poses a threat. Aardvarks have been observed to be very cautious creatures and practice an unusual ritual before exiting their abode. The aardvark stands at the edge of its burrow and uses its excellent sense of smell to detect any nearby predators. It listens for danger and emerges slowly. The aardvark then jumps a few times, pauses, and heads out for the night. Because aardvarks are primarily nocturnal, they don’t have much need for vivid sight and are colorblind. Their long ears and nose do the seeing for them. 

The physiology of these soil architects may strike some as strange, but it serves a purpose. The odd, arched silhouette of the aardvark is caused by its hind legs being longer than its front, which gives them a stronger stance when digging. This adaptation, combined with their formidable claws and muscular forelimbs, allows the aardvark to dig a hole 2-feet deep in just 30 seconds – much faster than a human with a shovel.

Photo by Louise Jobert from Wikimedia Commons

Ecological Importance

When aardvarks have depleted most of their territory’s termite mounds or ant nests, they must move on to new hunting grounds. Their abandoned burrows don’t stay empty for long and are occupied by a variety of species. Hyenas, wilddogs, warthogs, civets, and porcupines make their homes in aardvark burrows. The aardvark has an incredible impact on its environment by sculpting the very landscape itself and providing shelter for other creatures.

If you want to learn more about how aardvark burrows support other animals, check out this article documenting the one of the first observations of predators and prey cohabitating in the same burrow.

Burrowing away now,
Joely


Joely Hart is a wildlife enthusiast writing to inspire curiosity about Earth’s creatures. She holds a Bachelor’s degree in creative writing from the University of Central Florida and has a special interest in obscure, lesser-known species.


Sources and Further Reading:
https://www.miamiherald.com/news/nation-world/world/article274890346.html
https://www.thoughtco.com/10-facts-about-aardvarks-4129429
https://a-z-animals.com/animals/aardvark/
https://animalia.bio/aardvark#facts
https://www.britannica.com/animal/aardvark
https://carnegiemnh.org/a-is-for-aardvark/
https://nationalmuseumpublications.co.za/aardvarks-orycteropus-afer-and-their-symbolism-in-african-culture/

Featured Creature: Cat

What mammal makes a mysterious sound that scientists can’t figure out, can jump straight up to a height eight times their body length, and loves us when we love them?

Felis catus, the mostly tame, sometimes feral, house cat!

Oly (aka Olyneuropathy) the Tabby
Photo by Maya Dutta

Cats domesticated us humans around 7500 BCE, once we began growing grain – and we needed someone to control the annoying mice that ate it.  Cats found this to be a pretty good deal and the feeling was mutual.  The relationship worked so well that Felis catus became one of the top ten most populous mammals on Earth, with approximately 700 million of them today. 

By the way, if you want to sound cool when there’s a group of them around, you may refer to the numerous felines as a clowder or glaring of cats (as in, “Look, everyone – there’s a clowder of cats!”).

A cat eating a fish under a chair, a mural in an Egyptian tomb 
dating to the 15th century BC
(Photo: Public domain, via Wikimedia Commons)

Not all is rosy in mondo catus, sadly.  They are so adaptable, brought to all continents except Antarctica (mostly by humans in boats), that cats are among the most invasive of species.  They sometimes wind up in places free of natural predators, and their proliferation is fed by eating billions of birds, mammals, and reptiles, even causing an occasional extinction. (Then again, who are we Homo sapiens to pass judgment on other “invasive” species?)

Yet, undeterred by dark sides, people around the world are crazy about their cats.  We will go to great lengths to make them happy.  See, for example, this Kickstarter Shru Cat Companion crowdfunding campaign: https://www.kickstarter.com/projects/1046165765/egg-the-intelligent-cat-companion (scroll down, watch the video, and try to contain your excitement).  

The cat-toy inventor asked for a $15,000 investment, but cat lovers showed their love by sending Shru $170,779 for an exotic cat toy that does . . . well, I’ll let you figure that one out.  In the meanwhile thousands of non-profits run crowdfunders to conduct activities like feeding children and turning deserts green again, among many other urgent things – and their average take is only $9,237.  Such oddly-placed power of cat fervor is depressingly impressive (though it’s not the cats’ fault).  

But I digress.

Cats are indeed remarkable animals.  They can jump to heights over eight times their own body length (that would be almost five stories high for a six-foot human), always land on their feet, and display properties of both solids and liquids.  That’s right, given a definition of a liquid as a substance that conforms to the shape of a container, cats fill that bill to a T (or a Q or a Z).

Photo by FOX from Pexels

Cats have more vertebrae than most mammals, and their intervertebral discs are elastic and springy. So cats can contort into an amazing variety of liquid-esque positions.  And even more importantly, those spinal discs alternately expand and compress as the animal runs, which conserves energy and provides extra propulsion for speeds of up to 30 miles per hour (or 48 km/h).

Although cat behavioral and psychological scientists are a few years behind their canine counterparts, it is lately becoming scientifically apparent how intelligent and emotionally responsive cats are (of course, cat owners have known this forever). They just show it differently from dogs or other animals:

Yes! Cats do love their humans, even if sometimes they have a funny way of showing it. In fact, they form strong attachments to their owners and display their emotions very similar to humans. 

Just like people, cats can show their love through understanding and concern for others. In some instances, they have been known to risk their lives for their owners, protecting them from dangers like poisonous snakes or other hazards. Cats can also detect when their owner is upset and will often console them or, in some cases, even lick away their tears! Some cases exist where an owner left or passed away, and the cat exhibited signs of distress like sitting and meowing at the owner’s bedroom door, going into hiding, even refusing to eat. But perhaps some of the most incredible evidence that cats do get attached to their owners is in the cases where cats have traveled hundreds upon hundreds of miles to places they’ve never been in order to find their person.

https://www.azpetvet.com/cat-owner-love/
Photo by Sam Lion from Pexels

How they find their distant people, nobody knows. You may enjoy some more long-distance cat-travel stories at https://www.pets4homes.co.uk/pet-advice/10-amazing-cats-that-travelled-vast-distances-to-be-with-their-owners.html.

Finally, there’s purring, a sound that science still can’t quite figure out. It turns out that cats purr for all kinds of reasons other than that they’re happy to be on our laps. This video tells the story:

Intriguing cat facts and tales could go on forever, but for now let’s travel onward together on the road to purr-fect purr-ful bliss,

Adam


P.S. If you have access to Netflix, there’s a fascinating video entitled “Inside the Mind of a Cat.”  You can train cats to do all kinds of amazing tricks when you know how.  Note that they’re training you as much as you’re training them!


adam areday 2017

Adam Sacks is a Co-Founder and former Executive Director of Biodiversity for a Livable Climate (Bio4Climate). He has had careers in education, holistic medicine, computer technology, politics, and advocacy. A climate activist for the past 25 years, he has been studying and writing about Holistic Management since 2007. His primary goal is the regeneration of biodiversity and a livable planet.


Sources and Further Reading:
https://www.nationalgeographic.com/animals/mammals/facts/domestic-cat
https://www.pets4homes.co.uk/pet-advice/10-amazing-cats-that-travelled-vast-distances-to-be-with-their-owners.html
https://www.cantonrep.com/news/20191121/missing-cat-travels-1200-miles-to-be-reunited-with-its-owner-after-5-years
https://www.azpetvet.com/cat-owner-love/
https://en.wikipedia.org/wiki/Cat
https://www.dailypaws.com/cats-kittens/health-care/how-high-can-cats-jump

Featured Creature: Humpback Whale

What species of tremendous size and grace undertakes the largest mammal migration on Earth? 

The humpback whale!

Image by Brigitte Werner from Pixabay

In the vast expanses of the world’s oceans, a symphony of moans, cries, and howls fills the water, echoing across great distances. This stunning serenade is the song of the humpback whale, one of the most majestic creatures to grace the seas. 

Scientifically known as Megaptera novaeangliae, the humpback whale derives its common name from the distinctive hump on its back. With dark backs, light bellies, and long pectoral fins that resemble wings, these whales are a sight to behold. Their Latin name, signifying “big wing of New England,” pays homage to those impressive pectoral fins and early encounters European whalers had with these graceful giants off the coast of New England. 

Image by Monica Max West from Pixabay

Humpback whales are renowned for their enchanting songs, which echo through the ocean depths for great distances. These compositions, which consist of moans, howls, and cries, are among the longest and most complex in the animal kingdom. Scientists speculate that these melodic masterpieces serve as a means of communication and courtship, with male humpbacks serenading potential mates during the breeding season for minutes to hours at a time. Songs have also been observed during coastal migrations and hunts. Many artists have taken inspiration from these songs, and you can even listen to eight-hour mixes of them to help you get to sleep. Check it out:

Another marvel of the humpback are their awe-inspiring displays of acrobatics, from flipper slapping to full-body breaching. Despite their colossal size, these creatures display remarkable agility and grace. With lengths of up to 62.5 feet (19m, or one school bus!) and weights of 40 tons (40,000 kg), humpback whales are true behemoths of the ocean.

Life on the move

Life for a humpback whale is a tale of two halves—a perpetual journey between polar feeding grounds and tropical breeding waters. These remarkable migrations span thousands of miles and rank as one of the longest animal migrations on the planet, and the longest among mammals. 

Feasting on plankton, krill, and small schooling fish, humpback whales are skilled hunters, capable of consuming up to 1,360 kilograms of food per day. Employing innovative techniques such as bubble-netting and kick-feeding, they ensnare their prey with precision and efficiency. Generally these whales stay in small and dynamic groups, and they use their social intelligence and coordination to orchestrate these group hunting mechanisms. 

Ecological powerhouses

Humpback whales’ feeding and movement contributes to more than just their own wellbeing. As these majestic creatures feed on zooplankton, copepods, and other food sources in the oceans’ depths, and subsequently ascend to the surface, they disrupt the thermocline—a boundary between surface and deep waters—facilitating greater mixing of ocean layers. This enhanced mixing fosters increased nutrient availability, benefiting a myriad of marine organisms. 

They also cycle nutrients through their own consumption and excretion, contributing to a phenomenon known as the “biological pump.” These whales ingest biomass and nutrients from microscopic and small macroscopic organisms in deeper waters, digest it, and excrete their own waste in large macroscopic fecal plumes on the ocean’s surface. This cyclical process effectively transports nutrients from the ocean depths back to the surface, replenishing vital elements such as nitrogen for algae and phytoplankton growth. In regions like the Gulf of Maine, the nitrogen influx from whale feces surpasses that of all nearby rivers combined, underscoring the profound impact of these marine giants on nutrient cycling. Finally, when a whale’s life has come to an end, its own massive body sinks to the ocean floor and countless organisms are nourished by it in the decomposition process.

Image by shadowfaxone from Pixabay

Conservation and Resurgence

Understanding the multifaceted lives and roles of humpback whales underscores the urgency of their conservation. Historically valued solely for commercial exploitation, these majestic creatures now emerge as essential components of oceanic ecosystems. Though humpback whales have faced centuries of exploitation and habitat degradation, concerted conservation efforts offer hope for their survival, not only safeguarding whales themselves but also preserving the intricate ecological processes that sustain marine life and biodiversity. 

Whales continue to face threats from ship collisions, entanglement in fishing gear, noise pollution, and the disruption of habitat for their food sources due to trawling, pollution, and encroachment. But strong advocacy has brought these creatures back from the brink before, and our conservation and restoration work can safeguard the future of these enchanting giants and ensure that their songs continue to echo through the seas for generations to come.

Take a look at Sir David Attenborough’s tale of their resurgence and beauty:

May we steward the ocean with love and care,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources and Further Reading:
https://www.fisheries.noaa.gov/species/humpback-whale
https://www.nationalgeographic.com/animals/mammals/facts/humpback-whale
https://www.nwf.org/Educational-Resources/Wildlife-Guide/Mammals/Humpback-Whale
https://us.whales.org/whales-dolphins/species-guide/humpback-whale/
https://www.pbs.org/wnet/nature/blog/humpback-whale-fact-sheet/
https://conservationconnections.blogspot.com/2012/05/importance-of-whale-poop-interview-with.html
https://www.youtube.com/watch?v=uRY9giOUTrI (Whales as Keystone Species – Cycling Nutrients, Carbon and Heat with Joe Roman at Bio4Climate’s Restoring Oceans conference)

Featured Creature: Groundhog

What cute creature is an underground architect and an amateur meteorologist?  

The Groundhog!

Image by Harkiran Kaur from Pixabay

Groundhogs are famous rodents who enjoy the spotlight in early February, when people in the US and Canada celebrate Groundhog Day. These critters also go by woodchuck, whistle-pig, wood-shock, whistler, marmot, thickwood badger, red monk, land beaver, weenusk, monax, and groundpig.

Beyond their supposed (and generally debunked) prowess at predicting seasonal changes, these cuddly creatures exhibit a fascinating blend of behaviors and ecological significance. Groundhogs belong to the squirrel family as one of the 14 species of marmots, which are also aptly known as ground squirrels. Indeed, groundhogs’ fifteen minutes of fame, and their lives outside of it, are shaped by their burrowing talent and how that ties into their seasonal habits.

Life Underground

A defining characteristic of groundhogs is their habit of hibernating through the winter months. They spend the warmer seasons gorging themselves on vegetation, accumulating ample fat reserves to sustain them through the winter slumber. During hibernation, their heart rate drops and their body temperature lowers, enabling them to conserve energy in their underground burrows.

Burrowing is a hallmark behavior of groundhogs, with complex, multi-chambered burrows extending up to a total of 65 feet in length. These subterranean dwellings serve as multi-functional spaces where groundhogs sleep, raise their offspring, and even excrete waste in specific, separate tunnels. Intriguingly, the burrows also provide refuge for other wildlife species, which helps support the overall biodiversity of their habitats. Much like the dens of the related prairie dog, these burrows can shelter other species in times of need, offering a place of refuge during fires or cold snaps, or simply a home base to hide out from the usual predators. 

Cultural and Ecological Connections

Groundhog Day, celebrated on February 2nd each year, has captured the imagination of people across the United States and Canada. According to tradition, if a groundhog emerges from its burrow and sees its shadow, there will be six more weeks of winter, and if it doesn’t see its shadow (which happened this year), spring will come early. However, a study conducted in 2021 surveying years of predictions and seasonal records revealed that groundhogs’ predictions seem to be pure chance, with accuracy rates hovering around 50 percent.

Image by Kristie from Pixabay

Despite their failed reputation as predictors of seasonal changes, groundhogs excel in other aspects of survival. They are skilled foragers, feeding on a variety of vegetation, including leaves, flowers, and field crops. Their burrowing activities also play a crucial role in mixing and aerating the soil, a process which enhances nutrient absorption essential for plant growth.

While groundhogs are classified as species of least concern on the International Union for Conservation of Nature (IUCN) Red List, they face challenges in areas where they are overly abundant. Considered pests by some due to their burrowing activities, groundhogs occasionally come into conflict with humans, particularly farmers who may experience damage to gardens and crops.

Groundhogs are integral components of their ecosystems, providing shelter for various wildlife species and contributing to soil health through their burrowing activities. While adults are known to defend themselves fiercely against predators using their powerful claws and teeth, young groundhogs are more vulnerable to predation, particularly from birds of prey like hawks and other raptors.

Check out this short and sweet video from the Missouri Department of Conservation on Groundhogs:

Let us honor Groundhog Day as a reminder to be attentive to the organisms and ecosystems around us. The more we learn from one another, the better we can participate in the complex web of life in which we all play a role. 

Burrowing away now,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources and Further Reading:
https://www.nationalgeographic.com/animals/mammals/facts/groundhog?loggedin=true&rnd=1706906040576
https://carnegiemnh.org/groundhog-architecture/
https://mdc.mo.gov/discover-nature/field-guide/woodchuck-groundhog
https://www.britannica.com/animal/groundhog
https://thehill.com/changing-america/enrichment/arts-culture/3840820-the-history-of-groundhog-day-is-more-complex-than-you-may-think/

Featured Creature: Canada Lynx

What furry feline has stealthy skills, built-in snow gear, and a surprising screech? 

The Canada lynx!

Photo by Kevin Pepper

The Canada lynx, also known as Lynx canadensis or the Inuktut name of ᐱᖅᑐᖅᓯᕋᖅ (‘piqtuqsiraq’), is a charismatic mammal of the Northernmost parts of North America. This furry, fierce cousin of the bobcat can be found in Canada, of course, as well as Alaska and in some parts of Northern Maine. 

This forest feline may resemble a larger version of a housecat, but its predatory prowess is nothing short of formidable. With a heavy coat of fur, including distinctive tufts at its ears and a short, black-tipped tail, large paws that help navigate snowy terrain, and excellent vision and hearing, the Canada lynx is extremely well adapted to its environment. 

Photo by Laura Lorman from National Wildlife Federation

Prime Predator

In terms of physical attributes and behavior, the Canada lynx possesses exceptional senses, including large eyes and acute hearing, making it an adept nocturnal hunter. In fact, they are able to detect prey in the darkness from as far as 250 feet (76 m) away. 

Although not known for speed, these stealthy predators rely on their knack for stealth. They often lie in wait, concealed in strategic hiding spots, before making a calculated pounce on unsuspecting prey. Patiently biding their time for hours on end is not uncommon in their pursuit of sustenance.

Exhibiting a very specific carnivorous diet, these lynxes primarily subsist on snowshoe hares, and fluctuations in hare populations directly correlate with the rise and fall of lynx numbers. When it is available, a single lynx might consume an entire hare for a meal, storing remnants for later consumption. In the absence of hares, they resort to hunting small mammals, birds, and occasionally larger prey such as caribou.

Photo from Shuttershock

Suited to the snow 

Characterized by a compact body, diminutive tail, and elongated legs, the Canada lynx sports a dense, lengthy, and gray fur coat during winter, while transitioning to a shorter, lighter brown coat in summer. Their facial appearance appears broad due to elongated fur patches extending from their cheeks that can give the appearance of a two-pronged beard. They also sport distinctive black-tipped, bobbed tails and elongated tufts on their triangular ears.

Closely resembling the southern-dwelling bobcat, the key difference lies in their tails— the Canada lynx boasts completely black-tipped tails compared to the bobcat’s tail that features a white ring below the black tip. Moreover, the lynx’s sizable, heavily furred paws act as natural snowshoes, with a high surface area to support their movement over deep snow, aiding their mobility during winter hunts.

Residing across forested regions spanning Canada, Alaska, and certain parts of the contiguous United States, Canada lynxes prefer making dens under fallen trees, tree stumps, rock formations, or dense vegetation. These territorial animals are mostly solitary, particularly with male lynxes leading an almost entirely solitary existence. 

Photo from National Geographic

However, young lynxes stay in the care of their mothers for about a year, and some females have been observed living and hunting in pairs, raising questions for scientists about the social behavior of these big cats. Recently, a team of researchers has begun delving into the social lives of lynxes by tracking their vocalizations. And whether or not you are engaged in studying lynx populations, it’s well worth checking out the haunting sounds of the lynx call:

Big Cats of the Boreal

The Canada lynx, a native denizen of the expansive Boreal Forest, relies heavily on this vast and biodiverse habitat for survival. The boreal ecosystem, characterized by its dense forests of coniferous trees, provides the ideal cover and sustenance for these elusive predators. The lynx thrives amidst the rich tapestry of dense vegetation, fallen trees, and rocky outcrops, creating a mosaic of hiding spots and denning sites crucial for their survival. However, threats to the Boreal Forest, including deforestation, habitat fragmentation, and climate change, pose significant risks to the Canada lynx population. 

Deforestation for logging, mining, and human settlement disrupts the lynx’s habitat, diminishing their hunting grounds and safe havens. Fragmentation of the forest reduces connectivity between lynx populations, affecting genetic diversity and hindering their ability to roam and find suitable mates. Climate change exacerbates these issues, altering the boreal ecosystem and impacting prey availability, which is pivotal for the lynx’s sustenance. The cumulative effect of these threats imperils the Canada lynx, highlighting the urgent need for conservation efforts to safeguard both the lynx and its vital habitat in the Boreal Forest, which in turn plays an essential role regulating the carbon and water cycles and overall stability of our climate.

The Canada lynx is more than just an example of might and physical prowess in nature. A true embodiment of the northern forests, these elusive creatures and their unique lifestyle are treasures of the wild. Let us work for ecological integrity in all forests and ecosystems, Boreal and beyond. 

For my fellow cat lovers,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources and Further Reading:
https://canadiangeographic.ca/articles/animal-facts-canada-lynx/
https://racinezoo.org/canada-lynx-fact-sheet
https://www.nwf.org/Educational-Resources/Wildlife-Guide/Mammals/Canada-Lynx
https://www.nrcm.org/nrcm-creature-feature/canada-lynx/
https://www.nationalgeographic.co.uk/animals/2020/07/lynx-take-epic-2000-mile-treks-but-why-is-a-mystery
https://defenders.org/blog/2020/09/link-between-lynx-and-national-forests
https://theconversation.com/we-eavesdropped-on-some-canadian-lynx-what-we-heard-was-surprising-161539

Featured Creature: Fishing Cat

What fascinating feline with unique adaptations roams the aquatic ecosystems of Southeast Asia?

The fishing cat, otherwise known as Prionailurus viverrinus!

Image by G.C. from Pixabay

One Clever Cat

Venturing into the world of fishing cats unveils a marvel of feline prowess and adaptability. These incredible creatures, found across 11 countries in Southeast Asia, possess a unique combination of features that defy conventional feline stereotypes. 

Their distinct traits include a squat, stocky build, equipped with short, webbed feet, and an olive-gray coat adorned with black spots and stripes. Contrary to the belief that cats avoid water at all costs, fishing cats exhibit an unparalleled affinity for aquatic habitats. Indeed, these exceptional swimmers and adept hunters inhabit wetlands, marshes, and mangrove forests.

Image by G.C. from Pixabay

One of the most striking features aiding the waterborne adventures of the fishing cat is the webbing between their toes, facilitating seamless navigation through muddy wetlands without sinking. Additionally, their fur boasts a dual-layered composition: a short, dense undercoat shields their skin from the elements while swimming, while longer guard hairs contribute to their distinctive coloration, providing ideal camouflage for hunting in varied terrains.

Hunting primarily near water bodies, fishing cats display remarkable adaptability in their diet, feasting not only on fish but also on crustaceans, amphibians, and various aquatic creatures. These agile predators employ ingenious techniques, using their paws to scoop fish from shallow waters or even diving headfirst into deeper areas to secure a meal with their teeth. Their versatile diets extend to snakes, rodents, and even larger prey like young deer and wild pigs, but fish comprise about three quarters of their food.  

Watch a juvenile try to learn the process:

Fishing cats navigate diverse ecosystems with ease, forging their existence in habitats ranging from freshwater landscapes to coastal regions. While much of their behavior in the wild has eluded observation, fishing cats, which are nocturnal animals, are thought to have no natural predators besides humans. They tend to roam wetlands and areas that larger cats and predators aren’t well suited to inhabit. However, humans provide plenty of issues to contend with, and due to the pressures of habitat encroachment, development, and poaching, fishing cats are classified as a vulnerable species.

Smithsonian’s National Zoo, Jessie Cohen

Human and Habitat Pressures

In India, conservationists and researchers have embarked on a pivotal journey to safeguard these elusive creatures. The country’s many wetland ecosystems, integral to the fishing cat’s survival, face mounting threats from human encroachment, urbanization, and environmental degradation. Increasing development comes with issues of draining wetlands, polluting them, or altering their composition and natural salinity of the soil due to aquaculture operations. 

Many organizations, like the Wildlife Institute of India and the Eastern Ghats Wildlife Society, have sprung up to champion the cause of fishing cats and understand more about these creatures. Studies conducted in sanctuaries and wildlife reserves have shed light on the behavior, habitat preferences, and dietary patterns of fishing cats in captivity. Initiatives to map their territories and understand their population dynamics have proven more challenging, yet vital for conservation strategies. Camera trap surveys in regions like the Coringa Wildlife Sanctuary and the Krishna Wildlife Sanctuary have uncovered pockets of fishing cat populations, offering valuable insights into their distribution across diverse landscapes.

Juvenile Fishing Cat on a Branch (Photo by Michael Bentley from Wikipedia, CC 2.0) 

The evolving understanding of fishing cats has inspired conservation campaigns aimed at raising awareness among local communities. Educational programs, including the “Children for Fishing Cats” initiative, have empowered younger generations to become advocates for wildlife conservation, fostering harmony between human activities and the preservation of vital ecosystems.

Amidst the growing threats posed by habitat loss, human-wildlife conflicts, and climate change, conservationists advocate for stronger legislation and reinforced protection measures for wetlands and associated habitats. Efforts to mitigate conflict situations, prevent retaliatory killings, and promote sustainable practices among fishing communities stand as cornerstones in safeguarding these resilient creatures and their fragile environments.

As researchers navigate the delicate balance between human activities and wildlife conservation, the overarching goal remains clear: preserving the wetlands that sustain the extraordinary fishing cats is indispensable for safeguarding biodiversity, ensuring ecological resilience, and fostering coexistence between humans and these remarkable felines. More people and organizations are also coming to appreciate the benefits of healthy wetland ecosystems for buffering against storm surges, protecting water quality, contributing to the water cycle, and helping fight climate change. 

As we protect and restore our wetlands, we can safeguard the future for fishing cats, the ecosystems they regulate, and the web of life that connects us. 

For my fellow water lovers everywhere,

Maya


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. Having grown up in New York City and lived in cities all her life, Maya is interested in creating more natural infrastructure, biodiversity, and access to nature and ecological connection in urban areas.


Sources:
https://www.bbc.com/future/article/20210416-the-fight-to-save-indias-most-elusive-cat
https://animals.sandiegozoo.org/animals/fishing-cat
https://en.wikipedia.org/wiki/Fishing_cat 
https://nationalzoo.si.edu/animals/fishing-cat

Featured Creature: Prairie Dog

Have you ever heard of a squirrel that barks?

Let me introduce you to the Prairie Dog. 

Sometimes, when walking alone in the high grasslands of the Western United States, you may feel as if you are being watched. 

My first encounter with prairie dogs in the wild occurred as I stood in an empty prairie just outside of Badlands National Park in South Dakota. As I meandered along, minding my own business, dozens of furry creatures with beady little eyes appeared, propped themselves up on their hind legs, and began to follow my every step. Prairie dogs are adorable, it is true, but when you see a dozen spread out, standing upright, watching you intently, it can be a bit disconcerting.

They were, however, no threat, and weren’t eyeballing me just to judge me. A prairie dog standing on his hind legs – “periscoping” as it is known – is simply keeping watch for predators. And their distinctive bark? It may sound like “yip,” but it is actually a sophisticated language developed over thousands of years that is still not fully understood by scientists. 

Prairie dog barks convey everything about a predator’s size, speed, and location. According to a study at the University of Northern Arizona led by Con Slobodchikoff, Ph.D (see video linked below) pitch, speed, and timbre were all altered in a consistent manner corresponding to the species of predator and the characteristics of each. Certain “yips” could even be interpreted to represent nouns (the threat is “human”), verbs (the “human” is moving toward us), and adjectives (the “human” is wearing an ugly yellow shirt). So now that I think about it, I guess they were judging me, and I am not sure how I feel about that. But still, those are some impressive squirrels.

Wait, did you say squirrels?

Yes.

Squirrels. From the Sciuridae family. Prairie dogs are marmots (or ground squirrels) that bark like a dog, prompting Lewis and Clark to label them “barking squirrels,” which may lack points for creativity but is at least more accurate than calling them “dogs.” Prairie dogs, in fact, have no connection to dogs whatsoever.

Amaury Laporte (CC BY 2.0 via Wikimedia Commons)

There are five major species of prairie dog, who all live in North America at elevations between 2,000 and 10,000 feet. The Black-Tailed prairie dog covers the largest territory, filling an extensive region from Montana to Texas. Gunnison’s prairie dogs occupy the southwest near the Four Corners region. White-Tailed prairie dogs reside in Wyoming, Utah, and Colorado. Mexican and Utah prairie dogs belong to Mexico and Utah, respectively, and both are considered endangered.

As you may have observed, prairie dogs live in areas prone to harsh extremes of weather. To protect themselves, they dig extensive burrow networks with multiple entrances, designed to create ventilation, route flood water into empty chambers deep underground, and keep watch for predators. Their burrows connect underground, organized into sections called “coteries,” each of which contains a single-family unit responsible for the maintenance and protection of their area. Multiple coteries become “towns” of startling size and complexity. According to the National Park Service, the largest prairie dog town on record covered 25,000 square miles, bigger than the state of West Virginia!

That IS an impressive squirrel.

Indeed.

Amaury Laporte (CC BY 2.0 via Wikimedia Commons)

Over the years, however, the prairie dog’s range has shrunk, scientists estimate, by as much as 99%, largely because of agriculture. Farmers and ranchers tend to regard prairie dogs as a nuisance, as they sometimes eat crops (they are mostly herbivores) and their holes create a hazard for livestock. They will bulldoze their towns or conduct contest kills to remove them, which has had devastating impacts.

Experts consider prairie dogs to be a keystone species. Their loss affects hundreds of other species who rely on them for food or use their burrows for shelter. They are instrumental in recharging groundwater, regulating soil erosion, and maintaining the soil’s level of production. Prairie dog decline, in fact, eventually leads to desertification of grassland environments.

So, an impressive AND important squirrel?

Yes, and the restoration of prairie dog habitats could be a crucial step in mitigating the effects of climate change.

If you’ve caught prairie dog fever, dive deeper into the resources below. And to learn more about Prairie Dog language, check out this fascinating video:

Hoping one day to converse with my personal prairie dog army,

Mike


Mike Conway is a part-time freelance writer who lives with his wife, kids, and dog Smudge (pictured) in Northern Virginia. 


Sources:
https://animals.net/prairie-dog/
Prairie dog – Wikipedia
https://www.humanesociety.org/resources/what-do-about-prairie-dogs
Prairie Dog Decline Reduces the Supply of Ecosystem Services and Leads to Desertification of Semiarid Grasslands | PLOS ONE
Prairie Dogs | National Geographic
Prairie Dogs: Pipsqueaks of the Prairie (U.S. National Park Service) (nps.gov)

Featured Creature: Nilgai

Which creature is the largest Asian antelope, considered sacred to some and pest to others?

The Nilgai!

Photo by Hemant Goyal from Pexels

This fascinating four-legged friend could be described by a whole host of leading questions, depending on which notable features we want to emphasize. Elizabeth Cary Mungall’s Exotic Animal Field Guide introduced the nilgai with the question “What animal looks like the combination of a horse and a cow with the beard of a turkey and short devil’s horns?”

Personally, I find the nilgai much cuter than that combination might suggest, but it may all be in the eye of the beholder. The name ‘nilgai’ translates to ‘blue cow’, but the nilgai is really most closely related to other antelopes within the bovine family Bovidae. Mature males do indeed have a blue tint to their coat, while calves and mature females remain tawny brown in color.

Photo by Clicker Babu from Unsplash

As their physiology suggests, nilgai are browsers that roam in small herds, with a strong running and climbing ability. I encountered them in the biodiversity parks of New Delhi and Gurgaon, where efforts to rewild the landscape to its original dry deciduous forest make for ideal stomping grounds for the nilgai. 

Prolific Browsers

Indigenous to the Indian subcontinent, the nilgai is at home in savanna and thin woodland, and tends to avoid dense forest. Instead, they roam through open woods, where they have room to browse, feeding on grasses and trees alike. They’re considered mixed feeders for that reason, and will adjust their diet according to the landscape. Nilgai are adept eaters, standing on their hind legs to reach trees’ fruits and flowers and relying on their impressive stature (which ranges from 3 to 5 feet, or 1 to 1.5 m, at the shoulder) to get what they need.

Photo from Wikipedia
(By Akkida, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=34508948)

Like other large herbivores, nilgai play an important role in nutrient cycling and maintaining the ecosystems they’re a part of. In this case, that looks like feeding on shrubs and trees to keep woodlands relatively open, as well as dispersing seeds through their dung. One 1994 study noted the ecological value of the nilgai in ravines lining the Yamuna River, where the nitrogen contained in their fecal matter can make a large difference in soil quality, particularly in hot summer months. 

These creatures actually defecate strategically, creating dung piles that are thought to mark territory between dominant males. As a clever evasion tactic, these are often created at crossroads in paths through forest or savanna-scape, so that predators may not be able to trace the nilgai’s next steps so easily. 

Photo from Wikipedia (By Bernard Gagnon – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30634949)

Food webs for changing times

The natural predators of the nilgai once included the Bengal tiger and Asiatic lion, as well as leopards, Indian wolves, striped hyena, and dholes (or Indian wild dogs) which sometimes prey on juveniles. However, as deforestation, habitat loss and fragmentation, and development pressures change the face of the subcontinent, the ecological role of the nilgai has become more complicated. While their association with cows, a sacred animal in Hinduism, has widely prevented nilgai from being killed by humans, the relationship between people and nilgai is becoming more contentious. 

Where nilgai lack their traditional habitat to browse, they turn to plundering agricultural fields, frustrating the farmers who work so hard to cultivate these crops. Farmers in many Indian states thus consider them pests, and the state of Bihar has now classified them as ‘vermin’ and allowed them to be culled.  

Photo from Wikipedia (By Jon Connell – https://www.flickr.com/photos/ciamabue/4570527773/in/photostream/, CC BY 2.0)

There’s no place like… Texas?  

Strangely enough, when I got inspired by my nilgai sightings in India and decided to learn more about these Asian antelopes, one of the first search results I encountered involved nilgai populations here in the US. Specifically in Texas, an introduction of nilgai in the 1920 and 30s has spawned a population of feral roamers. Accounts say that nilgai were originally brought to the North King Ranch both for conservation and for exotic game hunting, somewhat distinct priorities that regardless led to the same result, a Texas population that now booms at over 30,000 individuals.

In this locale, nilgai largely graze grasses and crops, as well as scrub and oak forests. Here hunters have no qualms about killing them, but some animal rights groups object, and popular opinion remains divided on whether such treatment is cruelty or, well, fair game. 

These days, one concern is that a large nilgai population contributes to the spread of the cattle fever tick. Another concern remains about these grazers acting as ‘pests’ on agricultural land. 

Fundamentally there is a question that lies at the heart of the nilgai’s fate, both at home in India and Bangladesh, where natural predators and original habitat have steeply declined, and abroad, where they weren’t a part of the original ecosystem at all: what do you do when an animal’s ecological role is out of balance? 

In my view, there are no easy answers, but a familiar pattern we seem to uncover – that healthy ecosystems, where intact, harbor more complexity than we can recreate or give them credit for. Little by little, I hope we can support their conservation and resurgence. 

By Maya Dutta


Maya Dutta is an environmental advocate and ecosystem restorer working to spread understanding on the key role of biodiversity in shaping the climate and the water, carbon, nutrient and energy cycles we rely on. She is passionate about climate change adaptation and mitigation and the ways that community-led ecosystem restoration can fight global climate change while improving the livelihood and equity of human communities. She is the Assistant Director of Regenerative Projects at Bio4Climate.


Sources:
https://animalia.bio/nilgai
https://www.thedailybeast.com/nilgai-the-chimeric-beast-overrunning-texas-and-spreading-disease
https://en.wikipedia.org/wiki/Nilgai
https://www.britannica.com/animal/nilgai

Featured Creature: Beaver

Photo by Derek Otway on Unsplash

Which creature fights fires, creates wetlands, recharges groundwater, alters landscapes, and is a climate hero?

Beavers!

Photo by Derek Otway on Unsplash

At Bio4Climate, we LOVE beavers. We’re borderline obsessed with them (or maybe not so borderline) because they do SO much for Earth’s ecosystems, natural cycles, and biodiversity. These furry, water-loving creatures are finally beginning to receive the recognition they deserve in mainstream media now that more people see how their existence and behaviors lead to numerous benefits for everyone’s climate resilience.

We are one of the many organizations advocating for their reintroduction across North America and some places in Europe. For this reason, when I spotted one on a hike during my time in Tennessee, I did what any Bio4Climate team member would do: jump in excitement, yell out “Oh my gosh it’s a BEAVER!” and take a picture that I’ll treasure forever.

Photo by Tania Roa

The rockin’ rodent

Beavers live in family groups of up to eight members. Offspring stay with their parents for up to two years, meanwhile helping with newborns, food gathering, and dam building. To create dams, beavers use their large teeth to cut down trees and lug over branches, rocks, and mud until they successfully slow down the flow of water. These dams include lodges that beavers use as bedrooms and to escape from predators. Dams are designed according to the water’s speed: in steady water, the dam is built straight across, and in rushing water the dam is built with a curve. These engineers build their dams in a way that makes them nearly indestructible against storms, fires, and floods.

Look at those bright orange teeth! The color is thanks to an iron-rich protective coating. Beaver teeth grow continuously, and require gnawing on trees for trimming.

Photo by Denitsa Kireva: Pexels
Photo by tvvoodoo on Freeimages.com

Furry firefighters

Beaver dams are what make these rodents, the largest ones in North America, so special. When dams alter the flow of water, they create ponds that stretch out a river into a wide wetland. These ponds filter pollutants and store nutrients that then attract a variety of wildlife including fish seeking nurseries, amphibians looking for shelter, and mammals and birds searching for food and water sources.

The abundance of wildlife and the storage of necessary nutrients in beaver ponds classifies these places as biodiversity hotspots, meaning they are “biogeographic regions with significant levels of biodiversity that are threatened by human habitation” (Wikipedia). Beaver ponds also store sediment, and this helps recharge groundwater. Due to the sheer wetness of these ponds, and how deep the water filters into the soil, fires are often extinguished as soon as they reach a beaver pond. In this way, beavers are nature’s firefighters, of which we need many more in areas where extreme heat is increasing.

“There’s a beaver for that”
Ben Goldfarb

  • Wetland Creation
  • Biodiversity Support
  • Water Filtration
  • Erosion Control
  • Wildlife Habitat
  • Flood Management
  • Drought Resilience
  • Forest Fire Prevention
  • Carbon Sequestration
  • They’re Cool (pun intended)

Beavers are considered ‘ecosystem engineers’ because they actively shift the landscape by fluctuating the flow of water and the placement of plants and trees. Muskrats, minks, and river otters also find refuge in beaver lodges. When beavers take down trees, they create pockets of refuge for insects. Using their constructive talents, beavers significantly modify the region and, in turn, create much-needed habitat for many. Numerous creatures rely on beaver dams for survival, and the local ecosystem dramatically changes when a beaver family is exterminated; for these reasons, we also consider them ‘keystone species.’

Disliked dam builders

Despite the positive impact beavers have on biodiversity and ecosystems, we humans have viewed them as fur, pests, and perfume. By 1900, beavers went nearly extinct across Europe and North America. We hunted them for their fur in response to fashion trends, and trapped them for their anal musk glands, or castors, which produce castoreum, a secretion that beavers use to mark their homes and that humans use to make perfume. When beaver populations plummeted, so did the number of dams and ponds, meaning vast swaths of land were drastically altered during this time – and not for the better. To this day, we kill beavers when they wander into military bases or near urban areas since we see their dam-building behaviors as potentially damaging to man-made properties.

Thankfully, as more ‘Beaver Believers’ speak out against these practices and more authorities recognize the importance of beaver benefits, these rodents are beginning to return to their original homes. California recently passed a program specifically for beaver reintroduction efforts across the state. Washington, Utah, and Massachusetts are other states witnessing the return of beavers. People like Skip Lisle of Beaver Deceivers are designing culverts that prevent beaver dams from damaging infrastructure, but allow the beavers to create their biodiverse-filled ponds. These are just a few examples of the ways we can coexist with beavers, and in turn heal our communities.

Beaver Dam on Gurnsey Creek commons.wikimedia.org

Climate heroes

There are places in North America where water sources are decreasing for all living things, and in other regions the amount of rainfall is increasing while the amount of snow is decreasing. These weather conditions are detrimental to all of our health, unless we welcome back beavers.

As the effects of climate change and biodiversity loss increase, storing water, preventing runoff and erosion, and protecting biodiverse hotspots become more important by the hour. By restoring local water cycles, beaver ponds provide a source of life. By spreading water channels and creating new ones, beaver dams prevent flooding and stave off wildfires. By encouraging the cycling and storage of nutrients, beaver ponds nurture soil health and that leads to carbon sequestration. We all have something to gain from beavers as long as we allow them to do what they do best: build those dams.

To learn more about beavers, watch the video below and the two in the ‘Sources’ section. We also highly recommend Ben Goldfarb’s Eager: The Surprising Secret Life of Beavers and Why They Matter for further reading.

For all creatures that deserve a feature,

By Tania Roa


Sources:
Why BEAVERS Are The Smartest Thing In Fur Pants
Why beavers matter as the planet heats up 
9 Amazing Beaver Facts
Environmental Benefits of Beavers – King County 
8 Facts to Celebrate International Beaver Day | Smithsonian’s National Zoo 

Featured Creature: European Hamster

"European hamster at a city park" by Ivan Radic is licensed under CC BY 2.0.

Which keystone species creates intricate burrows, is aggressive towards its own kind, and hibernates from October to May? 

The European Hamster!

European hamster at a city park
(Photo by Ivan Radic licensed under CC BY 2.0)

Did you know that there are multiple species of hamster in the wild? I didn’t know this until recently, when I stumbled upon a BBC Earth video of a European Hamster foraging for food in a graveyard. Having only ever been exposed to domesticated hamsters, I was fascinated by this creature and eager to learn more about it. 

Burrow into the Basics

The scientific name for the European Hamster is Cricetus cricetus. These furry creatures have a small, ovalish body covered in reddish-brown fur, with the exception of white fur on their face and the side of their body. Quite small in size, European Hamsters typically weigh about 12 – 15 ounces and are about 8-9 inches in length (just a bit bigger than the average human hand!). 

In terms of geography, this solitary species is native to Central and Eastern Europe, hence its name. They inhabit steppe and grassland regions that are lush with greenery on relatively flat land. 

A Life Well-Lived

The European Hamster has a unique mating process. During the mating season between March and May, females engage in a ritual in which they run in a figure-8 pattern to attract their mate. Males, in turn, will chase the females during this ritual while making a special mating call. 

After successful mating with several males, a female’s pregnancy will last about 18 – 21 days and results in about 3 – 7 hamster pups. Females are the primary caregivers to their pups, as males are relatively hands-off in the upbringing of their young. They typically nurse the pups for about a month, or 30 days. The European Hamster has an impressive lifespan among small rodents – it can live up to 8 whole years!

Settling in for Winter

Hibernation is an important part of the European Hamster’s key to a long life. They typically rest from mid-October to mid-March in a deep (2 meter) underground burrow. During hibernation, they wake up about every week or so to get a quick snack before falling back into rest. 

Their burrows play a vital role in the European Hamster’s daily life. These burrows exist deep in the ground and have a variety of chambers for specific uses, like food storage. 

European Hamster burrow
(Photo by Bas Kers (NL) is licensed under CC BY-NC-SA 2.0)

With a healthy appetite, the European hamster loves to eat grasses, seeds, grains, roots, fruits, legumes, and occasionally some insects or insect larvae. They might often be seen spending the day packing their roomy cheeks full of food to bring back to their food storage chamber to prepare for hibernation. 

A Temperamental Creature

European Hamsters aren’t the most friendly of creatures, possibly least of all towards their own kind. They mark their territory with secretions, and when they come into contact with another member of their species, they may act aggressively. They have also been known to attack humans when approached by farmers, who may view the species as harmful to their agricultural operations. 

European Hamsters deserve particular recognition for their role as a keystone species. They play a crucial role in dispersing seeds throughout the European grassland and steppe ecosystems that they inhabit. They also contribute to the food web by primarily consuming producers (i.e., plants & plant products), and by serving as prey to a host of predators including birds, foxes, weasels, dogs, cats, badgers, and more. 

One Keystone Species Affects the Entire Ecosystem

Unfortunately, this important keystone species is currently critically endangered due to a number of factors. According to Animal Diversity Web, “European hamsters have been hunted or sold for their pelts. They also have been used for cancer research, due to their exposure to pesticides and air pollution in urban settings.”

Luckily, there are rehabilitation and reintroduction efforts underway to protect this valuable keystone species and the ecosystem it helps to support. You can learn more about one such project in Khotyn National Park, Ukraine by clicking here: 

For all keystone species, 
Abby


Abby Abrahamson is a writer, activist, and educator with a passion for community-led biodiversity and climate solutions. As a graduate of sociology and environmental studies, she appreciates the intersectionality of our challenges of climate justice, conservation, and regeneration. Now a Teacher Naturalist with Mass Audubon, Abby formerly worked with Bio4Climate on communications, college outreach, and community engagement. She has also been involved in Jane Goodall’s Roots and Shoots, an organization that helps empower young people to work on environmental, conservation, and humanitarian issues.


Sources:
https://www.animalia.bio/european-hamster
https://en.wikipedia.org/wiki/European_hamster
https://animaldiversity.org/accounts/Cricetus_cricetus
https://www.nationalgeographic.com/animals/article/common-hamster-named-critically-endangered-europe

Featured Creature: Banded Mongoose

Photo from pixabay.com

Which creature enjoys social gatherings, is well adapted to its habitat, and can be very altruistic?

Photo from pixabay.com

The Banded Mongoose is a small mammal with a mass of approximately ≤2kg (or 4 lbs) found in (and indigenous to) various parts of Africa. While most other mongoose species live a solitary life, the banded mongoose is gregarious living in groups of approximately 5-40 individuals with at least one breeding male and female. They are named so due to the black stripes across their greyish-brown dorsal area (back) while their ventral area (chest and stomach) is lighter than other parts. This species is commonly known for its ability and behavior to attack, kill, and eat snakes – even venomous ones! 

Photo from commons.wikimedia.org

Adaptation to their environment

Banded mongooses are mostly found occupying covered areas like savannahs, open forests, and grasslands for vigilance. They sleep and nurture their young in dens such as abandoned termite mounds, buildings, and even under bridges. By possessing short muscular limbs with strong claws, banded mongooses can dig to find food and get creative at creating and modifying their dens. Because they live in large groups as compared with other mongooses, their burrows have many entrances to ensure their escape during an attack and for sufficient ventilation. Despite having such nice dens, they are not sedentary to the specific den but rather frequently move from place to place every few days to avoid and distract their enemies. However, they can return to their favorite den after a certain time. In addition, their body color allows them to blend with several habitats and hence ensures their safety.

Photo by Dušan veverkolog on Unsplash

Like other animals, banded mongoose adults,  especially males, are responsible for the safety of the whole group. Unlike many other animals, all adult members are fully responsible for raising their young who are born synchronously (all matured female members get pregnant and give birth at the same time). Having muscular limbs, banded mongooses can stand by using their hind limbs just like their cousins (meerkats) to ensure the area is safe. 

These animals also exhibit altruistic behaviours whereby adults are ready to give up their life for the safety of the group. They were recorded standing and fighting against lions, birds of prey, and other animals, and while doing so other group members evacuated from the area. Additionally, since they are small in size, they move in groups and close to each other so that they may be seen as one large animal. And as they move, the young ones are located in the middle and the adult ones around them.

Diet and behavioral adaptation

The banded mongoose is a meso-carnivore with a diet consisting primarily of invertebrates such as beetles, millipedes, scorpions and others. Nevertheless, they also eat vertebrates such as snakes, rats, amphibians, mice, young birds and eggs. And in the case of plants, they eat wild fruits (if they’re available). Normally, they move together while locating the food area but each member finds and eats its food. In urban areas, they are mostly found around damp areas during their mealtime because there is plenty of food there, and then they rest in the covered areas mostly at noon to avoid the day heat.

On other hand, banded mongooses cope with food problems by using different symbiotic relationships with other animals like birds, warthogs (watch the video below to see this in action), elephants, and others (see more from attached YouTube links in the References). In this way, they become more successful in foraging and thriving in nature. They also use other animals, especially birds, to be alerted of various threats around them.

Though they are social animals, banded mongooses also exhibit inter-group territorial behaviour and their territories are marked with various scents, especially urine. Not only are territories scent-marked but so are group members. This is well seen when new pups are taken out for their first foraging and adults urinate over the young ones. When two different groups meet, they normally fight and the winning group takes over the area that they fought for. However, during the fight, some mature males and females from each group may mate.

Communication

Banded mongooses mainly communicate through sounds and scents. They possess various sound pitches, each with a different meaning and message to other members. They also developed anal and cheek glands which assist in the marking of their territory and young. They have a well-developed sense of smell, which they use to detect food.

Threats

Currently, banded mongooses are not faced with any critical danger and are listed as a“Least Concern” species due to their large population number and distribution in most parts of Africa. But this does not mean they don’t need any concern at all. I found some of them died in road accidents, and for those in urban areas most people used to attack them. Remember, even extinct species were once “Least Concern” and where are they now? Therefore, let’s give attention to every species in the world before their situation becomes worse.

Lesson to humanity

From such a small animal, we may think that there is nothing to gain, but there is a lot to learn from it. Banded mongooses, as said before, are ready to sacrifice their safety and even life just to make sure their groups are safe. This act shows love for others, something which nowadays very few people can do to others regardless of whether the one in need is their relative or not. I also like the way they raise their family. All group members are fully responsible for that, and if people were to do the same, there would be no street children and other problems also could be solved.

This lesson shows how we can learn from banded mongooses, but it is not just this species that we can learn things from. The whole of nature provides us with enough knowledge, materials and services that are essential for our survival. Therefore, let’s love nature and put our individual or organizational efforts into conserving it to ensure its natural existence lasts and more generations to come will continue to gain what we are gaining now. 

On behalf of mongooses everywhere, thank you!

Vitalis