Featured Creature: Slow Loris

What creature has large eyes, dexterous feet, and is the only venomous primate known to exist?? 

The slow loris (Nycticebus)!

Image Credit: Helena Snyder (CC BY-SA 3.0 via Wikimedia Commons)

Sometimes the smallest creatures hide the largest secrets/mysteries. At just about 10 inches long and weighing up to 2 pounds, the slow loris is, in my opinion, no exception. This small, tailless primate with large (and iconic) moon-like eyes inhabits rainforests. As omnivores, slow lorises feed on both fruit and insects. There are nine species total, all inhabiting the Southeast region of Asia ranging from the islands of Java and Borneo to Vietnam and China.

True to their name, slow lorises are not light on their feet and move slowly. Despite this, slow lorises are not related to sloths, but are instead more closely related to lemurs. But in the rainforest, that’s not such a bad thing. Their leisurely, creeping gait helps them conserve energy and ambush their insect prey without being detected.

Adaptations

Living in the dense, verdant rainforest isn’t for everyone.The jungle is riddled with serpentine vines, thick vegetation, and towering trees. But slow lorises have developed multiple adaptations that allow them to thrive in such an environment. 

  Their fur markings serve as a warning to other animals that they are not to be trifled with. This is known as aposematic colouration. Similar to skunks, contrasting fur colors and shapes signal that they are venomous which makes predators think twice about attacking. 

Slow lorises are nocturnal, and those large eyes allow them to significantly dilate their pupils, letting in more light and allowing them to easily see in near total darkness.

Even eating is no small feat in the rainforest. Slow lorises have specialized bottom front teeth, called a toothcomb. The grouping of long, thin teeth acts like a hair comb, allowing the slow loris to strip strong bark and uncover nutritious tree gum or sap. Equipped with an impressively strong grip, they can hang upside down and use their dexterous feet to hold onto branches while reaching for fruit just out of reach for most other animals. A network of capillaries called retia mirabilia allows them to do this without losing feeling in their limbs. With these adaptations, slow lorises are ideally suited for a life among the trees.

       Image Credit: David Haring (CC BY-SA 3.0 via Wikimedia Commons)

Venemous Primate

Slow lorises are the only venomous primate on Earth. They have brachial glands located in the crook of their elbow that secrete a toxic oil. When deploying the toxin, they lick this gland to venomize their saliva for a potent bite. And no one is safe– slow lorises use this venom on predators, and even each other. Fiercely territorial, they are one of the few species known to use venom on their own kind. In studying this behavior, scientists have found many slow lorises, especially young males, to have bite wounds.

The venom can be used as a protective, preventative defense mechanism as well. Female slow lorises have been observed licking their young to cover them in toxic saliva in hopes of deterring predators while they leave their babies in the safety of a tree to forage.

Whether you’re a natural predator, human, or another slow loris, a bite is very painful. Humans will experience pain from the strong bite, then a tingling sensation, followed by extreme swelling of the face and the start of anaphylactic shock. It can be fatal if not treated in time with epinephrine.

Image Credit: Helena Snyder (CC BY-SA 3.0 via Wikimedia Commons)

Bridging Human-Animal Conflicts

There are two major threats to slow loris populations – the illegal pet trade and habitat destruction. Because of their unique cuteness, soft fur, and small size, these creatures are often sold as illegal pets. Poachers will use flashlights to stun and capture the nocturnal slow loris, clip or remove their teeth  to avoid harmful bites to humans and, because of their endearing, teddy bear-like appearance, sell them off as pets. Slow lorises are nocturnal and not able to withstand the stress of being forced to be awake during the daytime. They are also often not fed a proper diet of fruit, tree sap, and insects which leads to nutritional deficiencies and poor health.


Habitat loss from agricultural expansion is another threat. As farms grow, slow loris habitat shrinks. Land cleared to plant crops encroaches upon the rainforest which results in less territory and food sources for the slow loris.

However, one scientist found a way to reduce the canopy-loss from farming and restore slow loris territory. After observing wild slow lorises using above-ground water pipes to traverse farmland, researcher Anna Nekaris had an idea. Through her organization, the Little Fireface Project, she worked with local farmers to add more water pipes to act as bridges for slow lorises to use to move about the area. These unnatural vines provided a highway connecting isolated spots of jungle to each other. Not only did the slow loris population benefit by gaining more arboreal access to trees and food sources, but the community also benefited. Nekaris worked with the farmers to provide more water pipes to their land while showing human-animal conflict can have a mutually beneficial solution.

Image Credit: Jefri Tarigan (CC BY-SA 4.0 via Wikimedia Commons)

Conservation

Every species of slow lorises is threatened, according to the IUCN, which monitors wild populations. Slow lorises may seem like an odd and somewhat unimportant creature on the grand ecological scale, but they are very important pollinators. When feeding on flowers, sap, or fruit, they are integral in spreading pollen and seeds across the forest. Through foraging and dispersal, slow lorises maintain the health of the ecosystem’s flora. 

The slow loris garners attention for its cute looks, but beneath its fuzzy face and moon-like eyes, is a creature connected to the/its environment. Slow lorises are a perfect example of how species are tethered to their habitat in an integral way – their existence directly impacts forest propagation. As a pollinator, they disperse pollen stuck on their fur to new areas and increase genetic diversity throughout the forest. Slow lorises are proof of Earth’s interconnectedness. 

To see the slow loris in action climbing from tree to tree and foraging for food, watch this short video.

Climbing up and away for now,
Joely


Joely Hart is a wildlife enthusiast writing to inspire curiosity about Earth’s creatures. She holds a Bachelor’s degree in creative writing from the University of Central Florida and has a special interest in obscure, lesser-known species.


Sources and Further Reading:

Articles

Scientific Papers

Featured Creature: Banded Sea Krait

What semiaquatic creature has a paddle-like tail, swims through crevices, and can even climb trees?

The banded sea krait!

Photo by Bernard Dupont, CC BY-SA 2.0 via Wikimedia Commons

Did you know that some snakes can swim? Beyond the legends of mighty and fearsome sea serpents, sea snakes exist, and swim through waters around the world, not just the pages of myth and folklore. 

The banded sea krait is a type of sea snake that inhabits the Pacific and Indian Oceans. Males are about 30 inches long, while females can be up to 50 inches long. As the name may hint, the banded sea krait’s bluish-gray body is scored by thick, dark blue bands numbering from 20 to 65. The top half of its body is colored more darkly than its underside, a kind of pigmentation called countershading unique to many sea creatures. Countershading is a type of aquatic camouflage that helps the sea krait blend in with its environment, an adaptation that contributes to these creatures’ survival.

By appearing dark from above, the sea krait becomes challenging to differentiate from the water. By appearing lighter from below, it melds with the sunlight of shallow water. This makes it difficult for predatory birds to spot the sea krait from the sky and conceals the reptile from prey watching below.

The banded sea krait boasts a specialized tail shaped like a paddle that enables it to swim quickly through the water. These creatures also have valved nostrils to keep out water when diving. Despite spending most of its life in the ocean, the banded sea krait lacks gills and must breathe air. However, it can hold its breath for up to 30 minutes. A unique organ called the saccular lung helps banded sea kraits take in more oxygen when they come up for air. This lung acts like a diver’s oxygen tank. 

Photo by Matt Berger, CC BY 4.0 via Wikimedia Commons

Formidable Feeding Habits

The banded sea krait hunts fish and eels. Its cylindrical body easily weaves through coral reefs and mangrove roots to reach the hiding spots of its prey. Females are up to three times larger than males and prefer to hunt Conger eels due to their size while males often select the smaller Moray eel. Like terrestrial snakes, banded sea kraits swallow their prey whole and can consume eels much larger than themselves. Such a massive meal hinders the ability to swim properly, so the krait must come ashore to digest. This digestion process can take weeks to finish. Talk about a satisfying meal!

Amphibious Nature

Banded sea kraits venture on land to digest food, shed skin, drink freshwater, and lay eggs. They spend about 25% of their time on islands, mangrove forests, or rocky inlets and the rest in the sea. Despite their paddle-like tail better suited for swimming, they travel remarkably well on land, and have even been observed climbing trees. 

Banded sea kraits use rocks to shelter beneath while waiting to digest their food and to rub against to help shed their skin. These reptiles must consume freshwater to survive and find lakes, streams, or puddles of rainwater on land to drink. When it comes to reproduction, eggs are laid under the sand by female banded sea kraits.

Photo by Matt Berger, CC BY 4.0 via Wikimedia Commons

Venom

Banded sea kraits are highly venomous. They inject venom through their fangs, and itis 10 times more potent than a rattlesnake’s! This comes in handy when it’s time to hunt. A banded sea krait may hide among coral crevices and wait to strike a passing eel. Its venom works quickly to paralyze the prey. 

Don’t be alarmed – humans are rarely bitten by these kraits, as they have a very docile and non-confrontational nature. Some people, mostly fishermen hauling up nets, have been bitten in the past (symptoms include seizures, muscle paralysis, and respiratory failure). 

Life Cycle

Aside from their other land-based activities, female banded sea kraits come ashore to lay eggs. They may lay between 5 – 20 eggs, which then hatch in about 4 months. Babies emerge fully capable of surviving the ocean environment and appear as miniature versions of the adult banded sea krait. They will hunt smaller prey until they grow larger enough to take on eels. Banded sea kraits are estimated to live for 20 years in the wild.

Take a look at some of their activities in action: 

And if you’re wondering how a sea krait can swallow an eel whole, watch this video:

From well-recognized animals like the humpback whale and dolphin to the lesser known banded sea krait, the ocean is a haven rich in biodiversity.

Swimming away for now,
Joely


Joely Hart is a wildlife enthusiast writing to inspire curiosity about Earth’s creatures. She holds a Bachelor’s degree in creative writing from the University of Central Florida and has a special interest in obscure, lesser-known species.


Sources and Further Reading:
https://earthsky.org/earth/lifeform-of-the-week-banded-sea-krait-is-a-two-headed-swimming-snake/
https://animaldiversity.org/accounts/Laticauda_colubrina
https://oceana.org/marine-life/banded-sea-krait/
https://www.dovemed.com/diseases-conditions/common-yellow-lipped-sea-krait-bite

Featured Creature: Gila Monster

What creature has a venomous bite and is uniquely adapted to survive harsh desert terrain?

The Gila monster!

Image by Josh Olander CC BY 4.0 via Wikimedia Commons

Be not afraid! The Gila monster is not a monster at all, but rather a unique lizard with special adaptations. This reptile is native to North America’s Southwest region including Arizona, Utah, Nevada, and Northwest Mexico. It is so named because of its discovery by herpetologist and paleontologist, Edward Drinkerin, in the Gila River basin.

The Gila monster is a lizard of substantial size, weighing about 1.5 – 3 pounds and clocking in at over 1 foot long. Males are characterized by their larger heads and tapering tails, while females have smaller heads and thicker tails. Its black and orange skin is easily identifiable and comes in two patterns – banded and reticulated. The banded and reticulated Gila monsters are recognized as two distinct subspecies.

Reticulate Gila Monster (Image by Jeff Servoss, Public domain via Wikimedia Commons)

Desert Dweller

This creature is suited for hot, arid environments like the Sonoran and Mojave deserts, where tough skin is needed for a tough landscape. The Gila monster’s beaded skin is created by osteoderms, small bumps of bone beneath its thick skin, that armor the lizard against predators and the harsh terrain. 

When desert temperatures soar over 105 degrees Fahrenheit (or 40.5 degrees C), even the Gila monster needs shelter from the sun. Like all reptiles, the Gila monster is cold-blooded and cannot regulate its body temperature on its own. So when it gets too hot, the monster needs to retreat to a shady place to cool down – a burrow. Gila monsters are equipped with long claws to dig burrows in the sand. These lizards spend 95% of their time underground to avoid scorching heat and will often sleep during the day to hunt at night.

Image from Unspash by David Clode

Diverse Diet

Gila monsters prey on insects, birds, small mammals, and frogs. They especially have a preference for eggs and will unearth turtle eggs or raid bird nests. Gila monsters use their forked tongue to process scents and track prey. These carnivorous lizards will climb cacti to devour the eggs of a bird’s nest or even stalk a mouse to its burrow in search of young offspring. In harsh environments, sustenance is difficult to come by so when it gets the chance, the Gila monster can eat 35% of its weight in food. Any unused calories are stored as fat in its tail.

When hunting live prey, it subdues its victim by secreting venom through grooves in its teeth. Venom glands are based in the lower jaw and, unlike snakes that strike and inject venom in seconds, Gila monsters must bite and hold or gnaw their prey to release their venom. They have a very strong bite and can clamp on for over 10 minutes.

While the bite of a Gila monster is painful, it is not deadly to humans. Gila monster venom is most similar to that of the Western diamondback rattlesnake, but the amount of venom released into the wound is much lower. Symptoms from a Gila monster bite include extreme burning pain, dizziness, vomiting, fainting and low blood pressure. Because of their solitary and secretive nature, Gila monster bites are very rare and most cases are from improper handling of these creatures. 

Hatchlings

When it comes time to reproduce, female Gila monsters lay 3-20 eggs in their burrows during July. The incubation period for Gila monster eggs can be as long as a human pregnancy, about 9 months. This is unusual as most reptiles incubate their eggs for just 1-2 months. The reason for such a long incubation period is thought to be due to overwintering. 

Overwintering is a survival method where hatchlings emerge from their eggs, but not their nest. Gila monster hatchlings stay in their burrow, waiting for weeks to months, for temperatures to rise and food sources to increase. But how can they survive for months without food? Gila monsters are born with fatty tissue in their tails that permits them to forgo consumption. Additionally, they will eat the nutrient-dense yolk from their egg which provides substantial calories.

Baby monsters are just about 5 inches long and look like a miniature version of an adult. When conditions are right, they will leave their burrow to hunt for insects and begin their solitary life in their desert habitat.

Photo by Michael Wifall from Tucson, USA, CC BY-SA 2.0 via Wikimedia Commons

Cultural Significance

The Navajo revere the Gila monster as a strong and sacred figure. The Gila monster is often called the first medicine man and had healing and divining powers. Now, the Gila monster is Utah’s official state reptile and represents Utah’s connection to both its Indigenous culture and wildlife. 

Despite the recognition, Gila monsters are listed as ‘Near Threatened’ by the International Union for Conservation of Nature (IUCN). There is an estimated population of several thousand left in the wild. Major threats include habitat loss from increased development and illegal poaching for the pet trade.

Venom of Value

The Gila monster’s venom has been a point of interest in the scientific community. While there is no antivenom for bites, there is hope to utilize its venom for medical use. Scientists discovered that a specific hormone within the Gila monster’s venom can alter the way cells process sugar – a potential cure for diabetes. By isolating this hormone, researchers were able to replicate it synthetically. After years of testing, a new drug to help with Type 2 diabetes was released in 2005 under the name Byetta – all thanks to the existence of the Gila monster.

Even the most unlikely organisms can have a great impact on humanity, which is one of the reasons why it is so important to preserve biodiversity. “Monsters”, allies, or wonders – you be the judge. 

Signing off for now,
Joely


Joely Hart is a wildlife enthusiast writing to inspire curiosity about Earth’s creatures. She holds a Bachelor’s degree in creative writing from the University of Central Florida and has a special interest in obscure, lesser-known species.


Sources and Further Reading:
https://www.aboutanimals.com/reptile/gila-monster/
https://blog.kachinahouse.com/the-lizard-in-native-american-culture/
https://www.livescience.com/65093-gila-monsters-photos.html
https://lazoo.org/explore-your-zoo/our-animals/reptiles/gila-monster/
https://www.nhm.ac.uk/discover/the-monster-whose-bite-saves-lives.html
https://kids.frontiersin.org/articles/10.3389/frym.2019.00017

Featured Creature: Clamworm

Photo by Alexander Semenov

What sort of worm is festooned with sensitive tentacles all the way down its sides and – though it can’t bark – has a nasty bite?


That would be the “clam worm” or alitta succinea, a denizen of estuarial waters.

Alternative names

I’ve always called them “seaworms” but they are normally known as “clam worms,” “ragworms,” “sand worms” or “pile worms”, and they are a species of annelid, the phylum of segmented worms.

Size and habitat

The clam worm can reach up to 15 cm (almost 6 inches) but most are smaller. This worm is reddish-brown in color, and has four eyes, tentacles or flaps all the way down its sides which can also function as gills, and sensory feelers at its head. 

When hungry, it uses a long internal mouthpart called a proboscis, along with two hooks that unfold to capture and then draw prey into a mouth at its front end. These worms are themselves an important food source for fish and crustaceans, and are widely used as fishing bait. Their typical habitat is rocks, vegetation, reefs, and mud. They burrow into the mud or sand, or hide under rocks, to be safe from many potential predators.

Photo from wikimedia.org

My own first encounter 

In my early teens, my father and I used to fish for striped bass with a flashy lure with a seaworm strung on a hook behind it. “Here’s how you do it,” my father counseled me. “Just poke the worm in its mouth and, as soon as it opens, insert the hook point.”

“Owww!!!” I exclaimed. “This worm bit me!” My father laughed, almost as hard as during one of my earlier ‘learning moments’ in a Maine field, when halfway over an electric fence I got shocked! On neither occasion did I expect the bite, but I eventually learned to be more careful. Those pincers were sharp! 

The pincers’ zinc content makes them strong while keeping them very lightweight. They certainly drew my blood that first time! The fish surely liked these worms, but eventually I gave them up for flies (less messy and easier on the worms).

Spawning behavior 

During the full and new moon tides in the late spring and early summer, these clam worms undergo a process called epigamy, which enlarges their parapodia (tentacles) so they can swim more easily to the surface to release their eggs and sperm, at which point their bodies rupture and disintegrate. Talk about dying to reproduce! One hopes at least they have fun on their way out. Their fertilized eggs then settle to the bottom and hatch into a new generation.

Replacement parts 

These worms can replace various body parts, and make new worms from broken pieces, such as when their tails are pulled off by a predator. But rear body segments are more readily repaired than heads, which are much harder to replace – those of us our heads still on can probably relate!

Check out a short video on clam worms and their special properties:

Their role in marine ecosystems 

The tunneling and boring of marine worms irrigate and oxygenate the shallow water pools encouraging beneficial plant and algae growth. Whether it’s in tide pools, lowland waters or oceanic reefs, the marine worm’s primary ecological contribution is as sustenance for aquatic animals further up the food chain. Species of these worms respond quickly to increased amounts of pollution in the water and on the ocean bottom. Their presence or absence may indicate important changes in the marine environment.

Some subspecies are at risk, but clam worms are OK 

Most of this species is doing just fine, at least when not being used for bait or eaten by humans. However, you might just want to think twice before skinny dipping on May-June new or full moon tides!

By Fred Jennings

Featured Creature: Poison Dart Frog

pixabay.com

What creature the size of a paperclip is lethal enough to kill ten grown men?

The poison dart frog!

pixabay.com

What makes the poison dart frog so powerful?

Poison dart frogs – so named because the Indigenous Emberá people of Colombia traditionally used the venom in blow darts – are some of the most toxic creatures on Earth. Some carry enough poison to kill ten grown men or to poison 20,000 mice. 

This potent toxicity originally comes from plant poisons that were ingested by the frogs’ insect prey. The effects of this diet, whose repercussions pass from plant to insect to frog to human hunters, shows just how interconnected these ecosystems are. Though it’s not established how the plant poison is processed into venom, when poison dart frogs are bred in captivity and fed a different diet, they do not develop the venom. 

Why are poison dart frogs so colorful?

The poison dart frog uses bright colors and patterns as a warning to predators – do not attack if you wish to live! Various species come in bright yellow, turquoise and black, or strawberry red, and these eye-catching visuals broadcast to predators that they’re venomous and dangerous. 

They use poison in self-defense, not in hunting, excreting venom into their skin when they’re threatened, so that a single touch would be enough to stop a human heart. This is such an effective tool that many species have evolved to mimic the bright colors and patterns of poison dart frogs in order to get some of that protection from predators by association. 

What are other characteristics of poison dart frogs?

They’re tiny! Grown adult frogs typically measure one to two inches, and can be held on a single fingertip (though you wouldn’t want to try this at home).

pxfuel.com

Like all frogs, they’re amphibious, which means they lay eggs that hatch tadpoles, and have permeable skin through which they can absorb water and oxygen. 

How are human activities impacting poison dart frogs?

Deforestation is one of the biggest threats to the poison dart frog. Poison dart frogs are spread across the rainforests of Central and South America. There are over one hundred species of them, and new ones continue to be found! However, habitat loss across these areas, especially in the Amazon, put them at risk of extinction.

Check out this brief look at the life of one golden dart frog:

These bright creatures may be dangerous, but they are just as dazzling. They show that brilliant things can come in small packages.